• Title/Summary/Keyword: 3D imaging system

Search Result 498, Processing Time 0.032 seconds

AUGMENTING WFIRST MICROLENSING WITH A GROUND-BASED TELESCOPE NETWORK

  • ZHU, WEI;GOULD, ANDREW
    • Journal of The Korean Astronomical Society
    • /
    • v.49 no.3
    • /
    • pp.93-107
    • /
    • 2016
  • Augmenting the Wide Field Infrared Survey Telescope (WFIRST) microlensing campaigns with intensive observations from a ground-based network of wide-field survey telescopes would have several major advantages. First, it would enable full two-dimensional (2-D) vector microlens parallax measurements for a substantial fraction of low-mass lenses as well as planetary and binary events that show caustic crossing features. For a significant fraction of the free-floating planet (FFP) events and all caustic-crossing planetary/binary events, these 2-D parallax measurements directly lead to complete solutions (mass, distance, transverse velocity) of the lens object (or lens system). For even more events, the complementary ground-based observations will yield 1-D parallax measurements. Together with the 1-D parallaxes from WFIRST alone, they can probe the entire mass range M ≳ M. For luminous lenses, such 1-D parallax measurements can be promoted to complete solutions (mass, distance, transverse velocity) by high-resolution imaging. This would provide crucial information not only about the hosts of planets and other lenses, but also enable a much more precise Galactic model. Other benefits of such a survey include improved understanding of binaries (particularly with low mass primaries), and sensitivity to distant ice-giant and gas-giant companions of WFIRST lenses that cannot be detected by WFIRST itself due to its restricted observing windows. Existing ground-based microlensing surveys can be employed if WFIRST is pointed at lower-extinction fields than is currently envisaged. This would come at some cost to the event rate. Therefore the benefits of improved characterization of lenses must be weighed against these costs.

Microvascular Contrast Image in Portal Veins of Rat using Micro-CT (마이크로 CT를 이용한 BALB/C(흰쥐) 간문맥의 미세혈관 조영 영상)

  • Lee, Sang-Ho;Lim, Cheong-Hwan;Jung, Hong-Rayng;Han, Beom-Hee;Mo, Eun-Hee;Chai, Kyu-Yun
    • The Journal of the Korea Contents Association
    • /
    • v.10 no.9
    • /
    • pp.259-266
    • /
    • 2010
  • The study focuses on the value of Micro CT, a high resolution X-ray imaging device, by using it on rats to observe the overall portal vein image of the liver and the microvasculature of each lobes, visualize the 4 segmental lobes and acquire 3D image of the microvasculature through the reconstruction of sectional image data. Less of the damage to liver of the 5 mice, the device was able to separate the liver into 4 segmental lobes and displayed the 4 portal vein microvasculature in 2D. By using the 3D MIP technique, observation of the whole portal vein system microvasculature in 3D image was made possible along with each of the portal vein segment's branches until the 6th branch. Measured the size of 6branch, the average was measured at 1branch : $0.51mm{\pm}0.08$, 2 branch : $0.32mm{\pm}0.12$, 3 branch : $0.23mm{\pm}0.11$, 4 branch : $0.19mm{\pm}0.08$, 5 branch : $0.13mm{\pm}0.06$, 6 branch : $70.5{\mu}m{\pm}14.1$. The 3D image and the images of the microvasculatures in the result of study proved that the Micro-CT can be considered many useful device in obtaining high resolution images.

Inter- and Intra-Observer Variability of the Volume of Cervical Ossification of the Posterior Longitudinal Ligament Using Medical Image Processing Software

  • Shin, Dong Ah;Ji, Gyu Yeul;Oh, Chang Hyun;Kim, Keung Nyun;Yoon, Do Heum;Shin, Hyunchul
    • Journal of Korean Neurosurgical Society
    • /
    • v.60 no.4
    • /
    • pp.441-447
    • /
    • 2017
  • Objective : Computed tomography (CT)-based method of three dimensional (3D) analysis ($MIMICS^{(R)}$, Materialise, Leuven, Belgium) is reported as very useful software for evaluation of OPLL, but its reliability and reproducibility are obscure. This study was conducted to evaluate the accuracy of $MIMICS^{(R)}$ system, and inter- and intra-observer reliability in the measurement of OPLL. Methods : Three neurosurgeons independently analyzed the randomly selected 10 OPLL cases with medical image processing software ($MIMICS^{(R)}$) which create 3D model with Digital Imaging and Communication in Medicine (DICOM) data from CT images after brief explanation was given to examiners before the image construction steps. To assess the reliability of inter- and intra-examiner intraclass correlation coefficient (ICC), 3 examiners measured 4 parameters (volume, length, width, and length) in 10 cases 2 times with 1-week interval. Results : The inter-examiner ICCs among 3 examiners were 0.996 (95% confidence interval [CI], 0.987-0.999) for volume measurement, 0.973 (95% CI, 0.907-0.978) for thickness, 0.969 (95% CI, 0.895-0.993) for width, and 0.995 (95% CI, 0.983-0.999) for length. The intra-examiner ICCs were 0.994 (range, 0.991-0.996) for volume, 0.996 (range, 0.944-0.998) for length, 0.930 (range, 0.873-0.947) for width, and 0.987 (range, 0.985-0.995) for length. Conclusion : The medical image processing software ($MIMICS^{(R)}$) provided detailed quantification OPLL volume with minimal error of inter- and intra-observer reliability in the measurement of OPLL.

The Study of in Vivo Visual Pathway Tracing using Magnetic Magnanese Tracer (자성 망간 추적자를 이용한 in Vivo 시신경경로 추적에 관한 연구)

  • Bae, Sung-Jin;Chang, Yong-Min
    • Progress in Medical Physics
    • /
    • v.18 no.1
    • /
    • pp.42-47
    • /
    • 2007
  • Purpose: To evaluate the tracing of optic nerve tract using manganese enhanced magnetic resonance Imaging. Materials and Methods: After injecting $30{\mu}l$ of $MnCl_2(1mol)$ (1 mol) Into the retina of female New Zealand white rabbit, the contrast enhancements at major anatomical structures of optic nerve tract were evaluated by high resolution T1-weighted Images 12 hours, 24 hours, and 48 hours after $MnCl_2(1mol)$ Injection using 3D FSPGR (Fast Speiled Gradient Recalled echo) pulse sequence at 1.5T clinical MR scanner with high performance gradient system. Also, for quantitative evaluation, the signal-to-noise ratios of circular ROI on anatomical locations were measured. Results: The major structures on the optic nerve tract were enhanced after injecting $MnCl_2(1mol)$. The structures, which showed enhancement, were right optic nerve, optic chiasm, left optic tract, left lateral geniculate nucleus, left superior colliculus. The structures on the contralateral optic pathway to the right retina were enhanced whereas the structures on the ipsilateral pathway did not show enhancement. Conclusion: The Mn transport through axonal pathway of optic nerve sys)em was non- invasively observed after injecting injecting $MnCl_2$ at the retina, which is the end terminal of optic nerve system. This Mn transport seems to occur by voltage gated calcium $(Ca^{2+})$ channel and In case of direct Injection Into the retina, the fast transpori pathway of voltage gated calcium channel seems to be responsible for Mn transport.

  • PDF

Research of 3D image processing of VR technology in medicine based on DNN

  • ZhaoZhe, Gong;XiaoDong, Li;XiaoYing, Shi;Geng, Liu;Bin, Chen
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.5
    • /
    • pp.1584-1596
    • /
    • 2022
  • According to a survey published in an authoritative journal in January 2020, the globalincidence rate of mental illness is 8.3% for men and 10.6% for women, which indicates thatmental illness has become a globally recognized obstacle. Therefore, specific psychotherapy including mental illness will become an important research topic. It is very effective forpatients with special mental diseases, such as mental illness, to reduce their mental reaction byexposure therapy; the system uses the virtual reality system of medical images processed by learningalgorithm to reproduce the effect of virtual reality exposure method of the high scene of transparent ladder. Compared with the old invasive exposure scene, the results show that theimprovement of both conditions has obvious effect, and the effect of human treatment underthe two conditions is not good. There are obvious differences, which show that virtual reality model will gradually replace the on-the-spot feeling. Finally, with more and more researchers have put forward a variety of other virtual reality image processing models, the research of image processing has gradually become more and more interested.

Objective Analysis of the Set-up Error and Tumor Movement in Lung Cancer Patients using Electronic Portal Imaging Device (폐암 환자에서 Electronic Portal Imaging Device를 이용한 자세 오차 및 종양 이동 거리의 객관적 측정)

  • Kim, Woo-Cheol;Chung, Eun-Ji;Lee, Chang-Geol;Chu, Sung-Sil;Kim, Gwi-Eon
    • Radiation Oncology Journal
    • /
    • v.14 no.1
    • /
    • pp.69-76
    • /
    • 1996
  • Purpose : The aim of this study is to investigate the random and systematic errors and tumor movement using electronic portal imaging device in lung cancer patients for the adequate margin in the treatment planning of 3-dimensional conformal therapy. Material and Methods : The electronic portal imaging device is matrix ion chamber type(Portal Vision, Varian). Ten patients of lung cancer treated with chest irradiation were selected for this study. Patients were treated in the supine position without immobilization device. All treatments were delivered by an 10 MV linear accelerator that had the portal imaging system mounted to its ganrty. AP or PA field Portal images were only analyzed. Radiation therapy field included the tumor, mediastinum and supraclavicular lymph nodes. A total of 103 portal images were analyzed for set-up deviation and 10 multiple images were analyzed for tumor movement because of respiration and cardiac motion. Result : The average values of setup displacements in the x, y direction was 1.41 mm, 1 78 mm, respectively. The standard deviation of systematic component was 4.63 mm, 4.11 mm along the x, y axis, respectively while the random component was 4.17 mm in the x direction and 3.31 mm in the y direction. The average displacement from respiratory movement was 12.2 mm with a standard deviation of 4.03 mm. Conclusion : The overall set-up displacement includes both random and systematic component and respiratory movement. About 10 mm, 25 mm margins along x, y axis which considered the set-up displacement and tumor movement were required for initial 3-dimensional conformal treatment planning in the lung cancer patients and portal images should be made and analyzed during first week of treatment, individually.

  • PDF

Design of Receiver in High-Speed digital Modem for High Resolution MRI (고속 디지털 MRI 모뎀 수신기 설계)

  • 염승기;양문환;김대진;정관진;김용권;권영철;최윤기
    • Proceedings of the IEEK Conference
    • /
    • 2000.06a
    • /
    • pp.69-72
    • /
    • 2000
  • This paper shows the more improved design of MRI receiver compared to conventional one based on Elscint Spectrometer. At first, the low-cost ADC is 16 bits, 3MHz sampling A/D converter Comparing to conventional one with signal bits of 14 bits, this device with those of 16 bits helps getting Improved the image resolution improved. If frequency is designed centering around 7.6 MHz to be satisfied in 10 MHz of maximum input bandwidth of ADC. For 1st demodulation, fixed IF is used for the purpose of the implementing multi nuclei system. Control parts & partial digital parts are integrated on one chip(FPGA). In DDC(Digital Down Converter), we got required bandwidth of LPF by controlling its decimation rate. With above considerations, we designed optimal receiver for high resolution imaging to be implemented through PC interface & experimental test of receiver of MRI after receiver's fabrication.

  • PDF

Quality Evaluation and Standardization Trend of Holographic Displays (홀로그래픽 디스플레이 화질 평가 및 표준화 연구 동향)

  • Nam, J.;Oh, K.J.;Park, M.;Kim, J.
    • Electronics and Telecommunications Trends
    • /
    • v.32 no.5
    • /
    • pp.65-73
    • /
    • 2017
  • A holography technique optically reconstructs a three-dimensional object in space to provide a natural sense of depth and volume to the observer, thereby providing an ultimate 3D image capable of solving the problem of "vergence-accommodation conflict" occurring in a conventional stereoscopic imaging system. In this paper, we present a technical framework for measuring the performance and evaluating the quality of a holographic display, which enables a quantitative measurement of the optical and physical properties that affect the performance and quality of a holographic display. In addition, we provide the trend regarding standardization related to holographic display measurements. Although this trend has barely started, research activities related to holographic display measurements and quality evaluations are expected to grow in the near future.

A Case of Thoracic Vertebral Chondroblastoma, Treated with 3-D Image Guided Resection and Reconstruction

  • Lee, Yoon-Ho;Shin, Dong-Ah;Kim, Keung-Nyun;Yoon, Do-Heum
    • Journal of Korean Neurosurgical Society
    • /
    • v.37 no.2
    • /
    • pp.154-156
    • /
    • 2005
  • We present a case of chondroblastoma in the thoracic vertebra. A 40-year-old patient with upper back pain and lower extremity weakness was admitted to our clinic. On neurological examination, the patient exhibited lower extremity spastic paraparesis. Magnetic resonance imaging revealed a mass infiltrating the 7th thoracic vertebra and its adjacent structures with concomitant compression of the epidural space. After right upper lung tuberculoma was resected through the transthoracic approach, T7 total corpectomy was done with anterior stabilization using a MESH cage and T7 rib bone graft. Two weeks after the first operation, remained part of vertebra was removed and posterior stabilization was performed using a pedicle screw fixation and cross linkage bar with the assistance of the navigation system. The final pathologic diagnosis of the vertebral lesion was benign chondroblastoma.

Vibration analysis of Atomic Force Microscopy (원자현미경(AFM)의 진동해석)

  • Jung, He-Won;Kim, Soo-Kyung;Park, Gun-Soon;Oh, Hyeong-Ryeol;Kim, Jin-Yong;Shim, Jong-Youp;Gweon, Dae-Gab
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.643-648
    • /
    • 2000
  • The AFM is an imaging tool or a profiler with unprecedented 3-D resolution for various surface types. The AFM technology, however, leaves a lot of room for improvement due to its delicate and fragile probing mechanism. The distance between probe tip and sample surface must be maintained in below the nano meter level in order to measure the sample surface in Angstrom resolution. In this paper, the mode analysis of AFM system, modification based on the mode analysis are performed and finally the sample surface is measured by the home-built AFM.

  • PDF