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Abstract: Augmenting the Wide Field Infrared Survey Telescope (WFIRST) microlensing campaigns
with intensive observations from a ground-based network of wide-field survey telescopes would have
several major advantages. First, it would enable full two-dimensional (2-D) vector microlens parallax
measurements for a substantial fraction of low-mass lenses as well as planetary and binary events that
show caustic crossing features. For a significant fraction of the free-floating planet (FFP) events and
all caustic-crossing planetary/binary events, these 2-D parallax measurements directly lead to complete
solutions (mass, distance, transverse velocity) of the lens object (or lens system). For even more events,
the complementary ground-based observations will yield 1-D parallax measurements. Together with the
1-D parallaxes from WFIRST alone, they can probe the entire mass range M & M⊕. For luminous
lenses, such 1-D parallax measurements can be promoted to complete solutions (mass, distance, trans-
verse velocity) by high-resolution imaging. This would provide crucial information not only about the
hosts of planets and other lenses, but also enable a much more precise Galactic model. Other benefits
of such a survey include improved understanding of binaries (particularly with low mass primaries), and
sensitivity to distant ice-giant and gas-giant companions of WFIRST lenses that cannot be detected by
WFIRST itself due to its restricted observing windows. Existing ground-based microlensing surveys can
be employed if WFIRST is pointed at lower-extinction fields than is currently envisaged. This would
come at some cost to the event rate. Therefore the benefits of improved characterization of lenses must
be weighed against these costs.
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1. INTRODUCTION

The proposed WFIRST mission (Spergel et al. 2015)
contains a significant microlensing component, which
will plausibly consist of six roughly 72-day continu-
ous campaigns with 15 minute cadence covering about
2.8 deg2 of the Galactic Bulge. The observations will be
made from L2 orbit and each campaign will be centered
on quadrature, i.e., roughly March 21 and September
21. The observations will be carried out in a broad
H-band, which is substantially less affected by dust
than optical bands. In principle, this permits observa-
tions closer to the Galactic plane where the microlens-
ing event rate is almost certainly higher than in the
lowest-latitude fields accessible to ground-based I-band
microlensing surveys.

The full power of a space-based survey at L2 can
only be realized by complementing it with a deep, high-
cadence, near continuous survey, as previous studies
have suggested. Gould et al. (2003), Han et al. (2004),
and Yee (2013) have previously discussed the possibility
of microlens parallax measurements by combining ob-
servations from Earth and L2 orbit. Han et al. (2004)
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demonstrated that combining large format surveys from
these two locations would yield microlens parallaxes
and so mass measurements for low-mass objects, par-
ticularly FFPs. Yee (2013) focused on the specific chal-
lenges of conducting such parallax observations using
WFIRST.

In this work, we provide a quantitative analysis
of how the success of WFIRST microlensing experi-
ment can be enhanced by complementary ground-based
survey observations. The value of the so-called one-
dimensional (1-D) parallax measurements is discussed.
These will be substantially more plentiful than the 2-
D parallaxes and, more importantly, measurable at all
Einstein timescales. We also point out two additional
benefits that such ground-based survey observations
can provide to WFIRST.

In our calculations, we assume these ground-based
observations are taken by a survey similar to the Korean
Microlensing Telescope Network (KMTNet, Kim et al.
2016; Henderson et al. 2014). We recognize that adopt-
ing such an optical survey comes with a loss in event
rate, as it requires that WFIRST be pointed at lower-
extinction fields than is currently envisaged. Therefore,
the benefits of adopting such a survey must be weighed
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against such a cost. Our methodology can be easily
adapted for any specified microlensing surveys, either
ongoing or planned.

2. MICROLENSING PARALLAXES

The standard microlensing light curve normally only
yields one single observable that is of physical interest,
the event timescale tE,

tE ≡ θE
µrel

. (1)

Here µrel = |µrel| is the relative proper motion between
the lens and the source, and θE is the angular Einstein
radius

θE ≡
√

κMLπrel , (2)

where κ ≡ 4G/(c2AU) and πrel = AU(D−1
L − D−1

S ) is
the lens-source relative parallax. Here DL and DS are
the distances to the lens and the source, respectively.

Under certain circumstances, the microlens paral-
lax effect can be measured, which yields the microlens
parallax parameter,

πE ≡ πE
µrel

µrel
; πE ≡ πrel

θE
. (3)

This can be done by using a single accelerating observa-
tory (Gould 1992), or by taking observations simultane-
ously from two or more separated observatories (Refsdal
1966; Gould 1994b; Holz & Wald 1996; Gould 1997). In
the two-observatory case, the microlens parallax vector
is given by1

πE =
AU

Dsat,⊥

(

∆t0
tE

,∆u0

)

, (4)

where Dsat,⊥ is the projected separation between the
two observatories evaluated at the peak of the event,
and ∆t0 = t0,sat − t0,⊕ and ∆u0 = u0,sat − u0,⊕ are the
differences in the peak times and impact parameters as
seen from the two observatories (we have assumed Earth
and one satellite), respectively. The above equation as-
sumes the same timescale tE as seen from both sites.
This is not a bad assumption for L2-Earth parallax, as
we will discuss later. Deviations from Equation (4) due
to the relative velocity between two observatories are
considered in Gould (1995b) and Calchi Novati & Scar-
petta (2015). See also Boutreux & Gould (1996) and
Gaudi & Gould (1997) for two specific situations.

In many cases, however, only the component of the
vector πE parallel to the opposite direction of accelera-
tion (i.e., away from the Sun for Earth and WFIRST )
projected onto the sky can be measured with reasonable
precision. This component is denoted as πE,‖

πE,‖ ≡ πE · n̂ ≡ πE cosφπ , (5)

where n̂ is the opposite direction of acceleration pro-
jected on the sky, and φπ is the angle between πE and
n̂.
1When real data are modeled, the actual satellite motion is taken
into account, so that tE is determined self-consistently.

The parameters πE,‖ and πE are often called 1-D
and 2-D parallaxes, respectively.

To facilitate later discussions, we introduce the vec-
tor microlensing parameter Λ (Dong et al. 2007)

Λ ≡ tEπE

AU
=
πrel/µrel

AU

µrel

µrel
, (6)

whose amplitude Λ = 1/ṽ is the reciprocal of the pro-
jected transverse velocity. Because Λ is a purely kine-
matic quantity, it can be used to distinguish between
disk events (disk lens + Bulge source) and Bulge events
(Bulge lens + Bulge source) (Gould et al. 1994). That
is, its (inverse) amplitude is typically

ṽ =

{

280 km s−1 : Disk events
1000 km s−1 : Bulge events

(7)

Here we have adopted πrel = 0.12 mas and µrel =
7 mas yr−1 as typical values for disk events, and πrel =
0.02 mas and µrel = 4 mas yr−1 for Bulge events.

In the satellite parallax method, Λ is more directly
measured than πE (Equation 4)

Λ =
1

Dsat,⊥
(∆t0, tE∆u0) , (8)

because ∆t0 is usually better measured than tE. More-
over, as we will show below, for the special case of L2
space parallaxes (as well as terrestrial parallaxes, Gould
& Yee 2013) tE∆u0 → ∆teff where teff ≡ u0tE, and teff
can be much better measured than tE. This is espe-
cially true for short timescale events, as tE and u0 can
be severely degenerate with each other as well as other
parameters such as the source flux Fs.

3. WFIRST + GROUND PARALLAXES

Whenever there are microlens parallax measurements
from comparing the light curves of two observatories,
it is also possible to obtain complementary parallax in-
formation from the accelerated motion of one or both
observatories separately. In the present case, WFIRST
orbital parallax will play a major complementary role to
the two-observatory parallaxes that are made possible
by a ground-based observatory (or network of ground-
based observatories). However, for clarity, we begin by
analyzing the parallax information that can be derived
by comparing the two light curves.

WFIRST -Earth microlensing has some features
that differ substantially from those two-observatory ex-
periments that have been carried out previously or that
are being carried out. First, since WFIRST is a ded-
icated space-based photometry experiment, it will al-
most always have essentially perfect measurements rel-
ative to the ground. Therefore, the errors in the paral-
lax measurements are very well approximated as those
due to the ground observations. Second, for similar
reasons, WFIRST -selected events will be quite faint as
seen from Earth, and therefore the Earth-based pho-
tometry errors can be treated as “below sky”, i.e., in-
dependent of flux. Third, since WFIRST will be at



WFIRST Plus Ground-Based Microlensing Telescope Network 95

L2, its projected motion relative to Earth will be ex-
tremely slow, substantially less than 1 km s−1. This can
be compared with typical lens-source projected veloci-
ties ṽ ∼ O(100 km s−1). This means that the Einstein
timescales tE are essentially identical as seen from the
two locations. In particular, it implies that the quantity
entering Λ⊥ = tE∆u0/Dsat,⊥ can be simplified by

tE∆u0 = ∆(u0tE)− u0∆tE → ∆teff (9)

where teff ≡ u0tE. That is, Equation (8) becomes

Λ → 1

Dsat,⊥
(∆t0,∆teff) , (10)

as we anticipated above. In addition, in most cases,
tE will in fact be measured from WFIRST even if it
cannot be measured from Earth, so that we can then
convert πE = (AU/tE)Λ. From our standpoint, we will
therefore regard measurement of Λ as the goal, with
the understanding that this itself will very often yield
πE. And even when it cannot, Λ is the crucial parame-
ter for distinguishing populations in any case because it
is a purely kinematic variable. Finally, since WFIRST
will be at L2, WFIRST -Earth parallaxes are exception-
ally sensitive to short events, which is traditionally the
most difficult regime, i.e., the regime of events gener-
ated by very low-mass lenses. That is, such events do
not last long enough to make orbital parallax measure-
ments, and their Einstein radii are too small to permit
simultaneous observation from observatories separated
by ∼ AU, like Spitzer and Kepler.

We analyze the WFIRST -ground parallaxes using
Fisher matrices (e.g., Gould 1995a). The full point-lens
equation is described by four parameters that are of
physical interest, ai = (t0, u0, tE, Fs), and one nuisance
parameter Fbase

F (t) = Fs(A[u(t)]− 1) + Fbase , (11)

where

A(u) =
u2 + 2

u
√
u2 + 4

; u2 = τ2 + u20 ; τ ≡ t− t0
tE

.

(12)
The nuisance parameter Fbase is essentially uncorre-
lated with other parameters, so we ignore it in the
following analysis. Under the assumption of uniform
observations at a cadence Γ, the Fisher matrix (i.e., in-
verse of the covariance matrix) is then given by

bij =
Γ

σ2
0

∫ +∞

−∞
dt
∂F (t)

∂ai

∂F (t)

∂aj
, (13)

where we have assumed that the observations are below
sky so that the flux error σ0 is independent of magnifi-
cation. Here

∂F

∂ai
=







−FsA
′τ/(utE)

FsA
′u0/u

−FsA
′τ2/(utE)
A− 1






, (14)

and

A′ ≡ dA

du
=

−8

u2(u2 + 4)3/2
. (15)

Although the Fisher matrix cannot be expressed in
closed form for the general case, it can be in the high
magnification regime, where A(u) = 1/u and A′(u) =
−1/u2. Below we derive these closed-form expressions
in this regime, and provide the analysis of the general
case in Appendix A.

In the high-magnification limit, it can be seen that

u0
∂F

∂u0
− tE

∂F

∂tE
+ Fs

(

∂F

∂Fs
+ 1

)

= 0 . (16)

That is, in this limiting regime, the parameters
(u0, tE, Fs) are degenerate. Hence, the only way to dis-
tinguish them is from the wings of the light curve. This
can be a serious problem for ground-based observations
of WFIRST targets, since they may be extremely faint
and noisy near baseline.

However, as stated above we are not actually in-
terested in directly measuring tE from the ground. We
therefore rewrite Equations (11) and (12) in the high-
magnification limit, which has only three parameters
(Gould 1996) ai = (t0, teff , Fpeak)

F (t) = FpeakQ(t) ; Q(t) =

(

(t− t0)
2

t2eff
+ 1

)−1/2

.

(17)
Then

∂F

∂ai
→
(

FpeakQ
3τeff/teff

FpeakQ
3τ2eff/teff
Q

)

, (18)

where τeff ≡ (t− t0)/teff . We then evaluate the inverse
covariance matrix,

bij =
π

8

ΓteffF
2
peak

σ2
0





t−2
eff 0 0

0 3t−2
eff 4t−1

eff F
−1
peak

0 4t−1
eff F

−1
peak 8F−2

peak



 ,

(19)
and thus the covariance matrix c = b−1

cij =
8

π

σ2
0

F 2
peakΓteff





t2eff 0 0
0 t2eff −teffFpeak/2
0 −teffFpeak/2 (3/8)F 2

peak





(20)
Thus the uncertainties on t0 and teff are

σ(t0) =

√

8

π

tE
Γ

σ0
Fs
u
3/2
0 g(u0) , (21)

σi(teff) =

√

8

π

tE
Γ

σ0
Fs
u
3/2
0 hi(u0) . (22)

The correction factors g(u0) and hi(u0) (i = 1, 2) allow
us to extend these formulae to the general case, and
are derived in Appendix A. We provide two different
forms of σ(teff): the first is derived by using purely
ground-based information, while the second is derived
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Figure 1. Functional forms of f(u0) (defined as Equa-
tion (33)), g(u0) (defined as Equation (50)), h1(u0) (defined
as Equation 52), and h2(u0) (defined as Equation 54) in the
range 0 < u0 < 1.

by assuming perfect knowledge of tE from WFIRST.
These three functions, g(u0), h1(u0), and h2(u0) are
illustrated in Figure 1 for 0 ≤ u0 ≤ 1.

In principle, tE cannot be known perfectly from
WFIRST for two reasons. First, WFIRST observa-
tions are not perfect, so the associated tE measurement
has a statistical uncertainty σW(tE). Second, even if tE
from WFIRST can be constrained extremely precisely,
tE of the same event as seen from Earth is still uncer-
tain to a limited level ∆tE, due to the relative velocity
between WFIRST and Earth. However, as we show in
Appendix A, tE for ground-based observations can be
treated as “perfectly” known as long as the uncertainty
in tE inferred from WFIRST is smaller, by a certain
specified factor (Equation 57), than the uncertainty in
tE from ground-based observations. We have further
proved in Appendices A and B that this condition is al-
most always satisfied for both the WFIRST statistical
uncertainty σW(tE) and the WFIRST -Earth systematic
offset ∆tE.

Therefore, the assumption that tE is perfectly
known from WFIRST almost always holds, so that
σ2(teff) is mostly what we can get for the uncertainty
in teff from ground-based observations.

Equations (21) and (22) have a number of impor-
tant implications. First, the two terms entering Λ have
exactly the same errors in the high magnification limit,
namely

√

8teff/πΓσ0/Fpeak. Second, the errors scale

strongly with magnification, ∝ u
3/2
0 times the correc-

tion factor. This implies a strong magnification bias, so
that the much more numerous faint potential sources
can relatively easily enter the sample at high magni-
fication. The magnification bias is stronger for σ(teff)
than for σ(t0), suggesting that πE,‖ is always better de-

termined than πE,⊥. However, comparison of g(u0) and
h2(u0) shows that this superiority is relatively modest.

Third, t0 is not correlated with other parameters,
and in particular it is not correlated with teff . This is
simply due to the fact that ∂F/∂t0 is an odd function
of t, while the other derivatives are even in t. This is
true for both Equations (14) and (18).

Fourth, teff is correlated with other parameters. As
the first indication of why this is important, we note
that even in the high-magnification limit, teff remains
significantly correlated with Fpeak (correlation coeffi-
cient −

√

2/3). Hence, for example, if there were inde-
pendent information about the source flux, the error in
teff could be reduced by a factor up to

√
3.

To make a quantitative estimate of the microlens
parallax errors, we adopt parameters typical of KMT-
Net (see, e.g., Henderson et al. 2014). We assume
Γ⊕ = 240 day−1, i.e., one observation per 2 minutes,
for four hours per night (which is the time the Bulge is
visible at the midpoint of the WFIRST campaigns) at
each of three observatories, and 33% bad weather. We
normalize the errors to 0.05 magnitudes at I = 18.2 We
then find

[

σ(πE,‖)
σ(πE,⊥)

]

=
0.52

cosψ

(

tE
day

)−1/2

10
Is−18

2.5 u
3/2
0

[

g(u0)
h2(u0)

]

.

(23)
where ψ is the phase of the WFIRST orbit relative to
quadrature at the peak of the event. We note that
because the observations are centered at quadrature,
0.82 ≤ cosψ ≤ 1. At first sight this pre-factor does not
look especially promising, particularly given the fact
that typical WFIRST microlensing sources will be sub-
stantially fainter than Is = 18. However, there are three
points to keep in mind. First, we expect tE ∼ 1 day
events to correspond to M ∼ MJup lenses, whose par-
allaxes would be πE ∼ 4 if they lay in the disk and
πE ∼ 1.5 in the bulge. Second, 10% of a “fair sample”
of events will have u0 < 0.1 and so errors that are & 30
times smaller. Third, the sample of events will not be
“fair”, but rather heavily biased toward fainter sources
at high-magnification.

Regarding the first point, in order to make clear the
measurability of parallax, it is better to express Equa-
tion (23) in terms of Λ, since this is a purely kinematic
variable that does not vary with the lens mass

[

σ(Λ‖)
σ(Λ⊥)

]

=
0.30 secψ

1000 km s−1

(

tE
day

)1/2

10
Is−18

2.5 u
3/2
0

[

g(u0)
h2(u0)

]

(24)
This shows that WFIRST -Earth parallaxes become
more sensitive at shorter timescales (at fixed Λ or pro-
jected velocity ṽ).

We illustrate this sensitivity in Figure 2 by show-
ing the number of events that satisfy πE/σ(πE,‖) > 5
(or πE/σ(πE,⊥) > 5) for typical Bulge lenses (ṽ =
AUµrel/πrel = 1000 km s−1) and typical disk lenses
(ṽ = 280 km s−1). Here we have assumed AI = 1.5

2The Vega magnitude system is used in the present work.



WFIRST Plus Ground-Based Microlensing Telescope Network 97

10-1 100 101

tE (days)

10-2

10-1

100

N
π
E
(t

E
)/
N

σ
p
h
o
t,
b
a
se
,W

<
0.
01
(t

E
)

Disk Events

Bulge Events
1-D πE
2-D πE
2-D πE (w/o tE constraint)

Mass Measurements (2-D πE + θE)

Figure 2. The normalized numbers of events with 1-D par-
allax (πE,‖) and 2-D parallax (πE) measured better than
5-σ for two sets of typical events, respectively. For “Disk
events”, we adopt πrel = 0.12 mas and µ = 7 mas yr−1,
and for “Bulge events”, we adopt πrel = 0.02 mas and
µ = 4 mas yr−1. For each set of typical events, we show two
curves for the 2-D parallax measurements, one with perfect
tE information from WFIRST (solid lines) and the other
without any external tE information (dash-dotted lines).
The former is more realistic (see Section 3). We also show
the number of events for which there are both πE measure-
ments and θE measurements (from finite source effects), as
discussed in Section 5.3. The normalization is the number
of events with WFIRST baseline photometric precision bet-
ter than 1%, which corresponds to a baseline magnitude of
H = 20.2 (Gould 2014b). We assume the WFIRST mi-
crolensing sources follow the luminosity function of Bulge
stars derived by Holtzman et al. (1998).

and then integrated over the Holtzman et al. (1998)
luminosity function. The Figure is normalized to the
number of events with WFIRST baseline photometric
precision better than 1%. This number can in turn
be estimated for any specific WFIRST strategy that
is either considered or adopted, and of course can be
empirically determined from the experiment itself.

There are several important points regarding Fig-
ure 2. First, by incorporating the tE information from
WFIRST observations, we are able to increase the num-
ber of 2-D parallax detections by a factor ∼1.2. Sec-
ond, the full parallax (πE) curves with and without
incorporating tE information from WFIRST lie only
about a factor of 1.2 and 1.5 below the πE,‖ curves,
respectively, despite the more serious deteriorations of
hi(u0) relative to g(u0) shown in Figure 1. This is be-
cause first the measurements are dominated by events
with relatively low u0 . 0.2 for which the average ra-
tio 〈h1(u0)/g(u0)〉 < 2, and second, for a given source
star, this can be compensated by going lower in u0 by
a factor 22/3 = 1.6.

Figure 2 also shows that the 2-D parallax mea-
surements will be available for a substantial fraction
of Jupiter-mass FFPs (tE . 1 day) in the disk and for
Earth-mass FFPs (tE . 0.05 day) in the Bulge. Shorter
events are in general preferred, but the WFIRST -Earth
parallax method implicitly sets a lower limit on the
event timescale tE that it can probe. This is because the
same event must be observable from both WFIRSTand
Earth, so that AU/πE & Dsat,⊥, or

tE & 0.02 day

(

ṽ

103 km s−1

)−1

cosψ . (25)

Therefore, Equations (23) and (24) are only valid for
disk events with tE & 0.06 days and Bulge events with
tE & 0.02 days.

4. ONE-DIMENSIONAL PARALLAXES

We now focus attention on 1-D parallaxes. As just
mentioned, these can be measured about 1.2 to 1.5
times more frequently than 2-D parallaxes by compar-
ing WFIRST and ground-based lightcurves. However,
our primary reason for this focus is that WFIRST can,
by itself measure 1-D parallaxes for sufficiently long
events. That is, WFIRST -Earth and WFIRST -only
measurements are complementary, being respectively
most sensitive in the short tE and long tE regimes.

Of course, the main disadvantage of 1-D parallaxes
is that they appear to be of little practical value. We
will show, however, that this assessment is far too pes-
simistic.

4.1. WFIRST-only 1-D Parallaxes

We begin by making an estimate of the WFIRST -
only 1-D parallax errors via Fisher matrix. Because
WFIRST is observing near quadrature, it is accelerat-
ing transverse to the line of sight at

a⊥ ≃ AUΩ2
⊕ cosψ; ψ ≡ Ω⊕(t− tquad). (26)

Here Ω⊕ ≡ 2π/yr and tquad is the epoch when the field
is at quadrature. In the approximation that the accel-
eration is constant, this induces a quadratic deviation
in the lightcurve, which to lowest order implies a nor-
malized lens-source separation u(t),

[u(t)]2 =

[

t− t0
tE

+
1

2
πE,‖(Ω⊕(t− t0))

2 cosψ

]2

+ u20 .

(27)
This leads to an asymmetric distortion in the magnifi-
cation (Gould et al. 1994). With this as well as Equa-
tion (11), one finds that

∂F

∂πE,‖
=
FsΩ

2
⊕t

2
E cosψ

2

A′τ3

u
(πE,‖ ≪ 1) . (28)

Because Equation (28) is odd in t, the only other
microlensing parameter that it couples to is t0. Thus,
the Fisher matrix is two-dimensional. To evaluate
this, we first specify that WFIRST observations will
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generally be above sky, so that the flux errors scale
σ = σ0,WA

1/2, where σ0,W is the error at baseline. As
in Equation (13), we approximate the observations as
being at a uniform rate ΓW, and find

bij =
ΓWtE
σ2
0,W

∫

∂F

∂ai

∂F

∂aj

dτ

A

=
ΓWF

2
s

4σ2
0,WtE

(

4G0 −2ηG1

−2ηG1 η2G2

)

, (29)

where η ≡ Ω2
⊕t

3
E cosψ, and







G0 ≡
∫

A′2A−1u−2τ2dτ
G1 ≡

∫

A′2A−1u−2τ4dτ
G2 ≡

∫

A′2A−1u−2τ6dτ
. (30)

Then the covariance matrix is

cij = b−1
ij =

σ2
0,WtE

ΓWF 2
s η

2

1

G0G2 −G2
1

(

η2G2 2ηG1

2ηG1 4G0

)

.

(31)
The uncertainty in πE,‖ is σ(πE,‖) = c

1/2
22 . It can

be expressed analytically only in the high magni-
fication limit. Therefore, similarly to the case of
WFIRST+ground 2-D parallaxes, we introduce a cor-
rection factor f(u0) that approaches unity as u0 ap-
proaches zero, and rewrite σ(πE,‖) as

σ(πE,‖) = 1.77
σ0,W
Fs

secψ

Ω2
⊕t

5/2
E Γ

1/2
W

f(u0) , (32)

where 1.77 = [14/3− 321/2 ln(1+
√
2)]−1/2 is the result

of an analytic calculation, and

f(u0) ≡ 1.13

√

G0

G0G2 −G2
1

. (33)

This function is also illustrated in Figure 1. The de-
terioration toward higher u0 is primarily due to the
fact that the high-mag peak contributes the majority
of the information about πE,‖. Secondarily, t0 becomes
increasingly correlated with πE,‖ at higher u0.

Adopting a cadence of ΓW = 100 day−1 and as-
suming 0.01 mag errors at H = 20.2 (Gould 2014b),
this yields

σ(πE,‖) =
0.017

cosψ
10

Hs−20

5

(

tE
10 day

)−5/2

f(u0) . (34)

For an intuitive understanding of the relevance of this
error bar to the parallax measurement, it is best to
express it in terms of Λ‖

σ(Λ‖) =
0.10 secψ

1000 km s−1
10

Hs−20

5

(

tE
10 day

)−3/2

f(u0) .

(35)
From Equations (34) and (35), it is clear that

WFIRST will make very good πE,‖ measurements for
long events but will do much worse for short events.
For example, for tE = 2 days, the pre-factor in Equa-
tion (35), goes from 0.10 to 1.1.

4.2. Combined Orbital and Two-Observatory
1-D Parallaxes

Comparison of Equations (24) and (35) shows that the
two approaches to obtaining 1-D parallaxes are com-
plementary, with precisions σ(Λ‖) ∝ t

1/2
E for WFIRST -

Earth parallaxes and σ(Λ‖) ∝ t
−3/2
E for WFIRST -only

parallaxes. The normalizations (IS = 18 in the first and
Hs = 20 in the second) may appear deceptive, particu-
larly because typical sources (assuming Sun-like stars)
will have (I − H) ∼ 0.8 + E(I − H) ∼ 1.8 (Bessell &
Brett 1988) assuming E(I − H) ∼ 1 (Gonzalez et al.
2012; Nataf et al. 2013). However, one must bear in
mind that that the two-observatory formula has a very
strong dependence on u0, whereas the WFIRST -only
formula is, by comparison, almost flat in u0.

To investigate this further, we consider the com-
bined impact of both measurements, assuming AH =
0.5 and (as before) a Holtzman et al. (1998) luminosity
function and AI = 1.5. We denote the precision derived
by combining these two formulae by σfull(πE,‖).

We show in Figure 3 the numbers of events with
1-D parallax measurements better than a specified (ab-
solute and relative) precision for WFIRST -only and
WFIRST plus ground observations, respectively. The
normalizations are again to the number of events with
WFIRST baseline precisions of 1%. Figure 3 demon-
strates the importance of ground-based observations in
measuring 1-D parallaxes: without these observations,
WFIRST will not be able to make any meaningful 1-D
parallax measurements for short timescale events.

4.3. Xallarap and Lens Orbital Motion

Measurements of πE made from a single observatory
can be corrupted by xallarap (motion of the source
about a companion) and lens orbital motion (motion
of the lens about a companion), whereas those de-
rived from comparison of contemporaneous measure-
ments from two observatories cannot. This is because
the basis of single-observatory πE measurements is the
accelerated motion of the observer, which can in prin-
ciple be perfectly mimicked by accelerated motion of
the source (or the lens). Below we only consider the
acceleration of the source (i.e., xallarap effect), but our
methodology applies to the other case as well.

In the case of complete 2-D πE measurements,
xallarap-dominated acceleration effects can in principle
be distinguished from the parallax effects from their or-
bital period and the direction of their implied angular
momentum vector. That is, if the effects of parallax are
mistakenly attributed to xallarap, then the xallarap so-
lution will lead to a companion with a 1-year period
and orbital axis that is exactly aligned to that of the
Earth’s (projected on the plane of the sky) (Poindexter
et al. 2005).

This purely internal test fails completely, however,
for 1-D parallaxes, unless the period is so short that
a 2-D xallarap solution can be reliably extracted from
the data. The contamination of 1-D parallaxes due to
xallarap has never previously been estimated, probably
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Figure 3. The normalized numbers of events with 1-D parallax (πE,‖) measurements better than given precisions for WFIRST -
only observations (dashed lines), WFIRST plus ground-based survey observations (dash-dotted lines for linear approximation
and solid lines for full derivation). The left panel shows curves with absolute measurement uncertainties (σ(πE,‖)). The right
panel shows curves with 5-σ detections (πE,‖/σ(πE,‖) = 5) for typical disk events (πrel = 0.12 mas, µ = 7 mas yr−1) and
Bulge events (πrel = 0.02 mas, µ = 4 mas yr−1). The normalization is the same as that used in Figure 2. That is, the number
of events with WFIRST baseline photometric precision seen by WFIRST better than 1%. The flattening for tE > 10 days
is caused by our restriction that u0 ≤ 1, but it is very likely real for two reasons. First, πE,‖ measurements will be quite
difficult for u0 > 1, as the correlation between t0 and πE,‖ becomes significant (correlation coefficient r(t0, πE,‖) ≥ 0.65 for
u0 ≥ 1); and second, many events with tE > 10 days will not be fully covered by WFIRST observations.

due to the limited previous interest in 1-D parallaxes
themselves.

The contamination due to xallarap can be rigor-
ously calculated under the assumption that the multi-
plicity properties (masses and semi-major axes) of com-
panions to the microlensed sources are similar to those
of solar-type stars in the solar neighborhood. We first
note that the amplitude of Earth’s acceleration relative
to the projected Einstein radius r̃E ≡ AU/πE is (at
quadrature) Ã = (GM⊙/AU

2)/r̃E. The component of
this acceleration entering πE,‖ is Ã cosφπ .

By the same token, the acceleration due to a com-
panion of mass m and semi-major axis a relative to
the Einstein radius projected on the source plane r̂E ≡
DSθE, is Â = (Gm/a2)/r̂E. And the component that
contributes to the asymmetry of the event is Â cosφξ,
where φξ is the angle between the lens-source relative
motion and the instantaneous acceleration of the source
about its companion. Hence, the ratio of the xallarap-
to-parallax signals contributing to this asymmetry is

|ξ‖|
|πE,‖|

=
Â| cosφξ|
Ã| cosφπ |

=
m

M⊙

(

a

AU

)−2
DL

DLS

| cosφξ|
| cosφπ|

,

(36)
where DLS ≡ DS −DL is the distance between the lens
and the source.

To evaluate the distribution of this ratio for Bulge
lenses, we adoptDL/DLS = 8. We then consider the en-
semble of binary companions in Figure 11 of Raghavan
et al. (2010), which is a complete sample of companions

for 454 G-dwarf primaries. We restrict attention to the
53 companions with semi-major axes 0.2 < a/AU < 30
on the grounds that the handful of closer companions
would be recognized as such from oscillations in the
lightcurve, while those farther away would induce asym-
metries that are too small to measure. We allow φπ to
vary randomly over a circle and φξ to vary randomly
over a sphere. Figure 4 shows that xallarap contami-
nation is very serious (>100%) for about 2% of Bulge
lenses and is significant (>10%) for about 4.5%. For
disk lenses (DL/DLS ≈ 1), the corresponding fractions
decrease by a factor of eight. After weighting these two
kinds of events by their contributions to the total opti-
cal depth (∼ 60% due to Bulge lenses and ∼ 40% due
to disk lenses, Han & Gould 2003), we find that ∼ 3%
of all events show significant xallarap contamination.

In addition, we note that there is a comparable
contamination from the acceleration of the lenses due
to their companions. This so-called lens orbital motion
can also mimic the orbital parallax effect, regardless of
whether the secondary lens produces perturbations on
the lightcurve or not. In fact, the contamination of the
lens orbital motion to the orbital parallax effect should
more likely become a concern once the lightcurve does
show binary signatures.

Therefore, with WFIRST alone up to 6% of all
events will show false parallax detections. Such con-
tamination would be removed by a complementary
ground-based survey for relatively short events (tE . 3
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Figure 4. The fraction of Bulge events (DL/DLS = 8) with
parallax signal affected by the xallarap effect to a given pre-
cision.

days). For longer events, this contamination cannot
be removed completely due to the limited power of
WFIRST -Earth 1-D parallax, but the study of this con-
tamination in the short event sample allows to better in-
terpret the 1-D parallax measurements for these longer
events.

4.4. Value of πE,‖ Measurements

A large sample of 1-D parallaxes with well-understood
selection has two major uses. First, it can be directly
analyzed to simultaneously derive a Galactic model and
the lens mass function. Second, it allows one to derive
the complete solution (namely individual masses, dis-
tances and transverse velocities) once combined with
the measurement of the lens-source relative proper mo-
tion µrel, which can be obtained for some events with
WFIRST alone and even more events with follow-up
imaging. These two applications are discussed in turn.

In both cases, we show that the addition of short tE
events from combining ground and space observations
will play a critical role in understanding the low-mass
end of the mass spectrum, i.e., brown dwarfs (BDs) and
FFPs.

4.4.1. Statistical Studies Using 1-D Parallax Samples

At present, large microlensing samples with well-
understood selection are characterized by a single mi-
crolensing variable, the Einstein timescale tE, i.e., no
parallax information. Although not usually thought of
this way, we dub this case as a “0-D parallax measure-
ment” in order to contrast it to 1-D and 2-D parallaxes.
That is, in the three cases, the available information
consists of (tE), (tE , πE,‖), (tE , πE,‖, πE,⊥).

The statistical interpretation of a 0-D parallax
sample requires a Galactic model to constrain six of the

input variables (lens and source distances and trans-
verse velocities) to obtain information about the sev-
enth (lens mass function). This situation is not as bad
as it may first seem. The three source properties are
well understood statistically from direct observations,
even if these source properties are not measured for
each individual event, and Galactic models are con-
structed based on a wide variety of very good data.
Sumi et al. (2011) used this technique to infer the exis-
tence of a population of FFPs. Nevertheless, uncer-
tainties in Galactic models remain considerable, and
hence it would be valuable if microlensing studies could
further constrain them rather than propagating them.
Moreover, even if the Galactic model were known per-
fectly, the statistical precision of microlensing studies
is greatly reduced by the requirement of deconvolving
three parameters to learn about the one of greatest in-
terest.

Han & Gould (1995) argued that individual lens
mass and distance would be much more tightly con-
strained by measuring the full parallax vector πE in
addition to tE, and Calchi Novati et al. (2015) showed
that this was in fact the case for their sample of mi-
crolenses with Spitzer parallaxes. Their work still in-
corporated Galactic models, but the mass/distance con-
straints were dramatically improved compared the case
with timescales alone. See also Gould (2000).

The 0-D parallaxes of Sumi et al. (2011) and the
2-D parallaxes of Calchi Novati et al. (2015) have had
different applications. Specifically, the great value of
the first is that it could make statistical statements
about low-mass objects, while that of the second was
the greatly improved precision of individual lenses. In
particular, the 2-D study could not make any statement
about low-mass objects because the Spitzer sample was
strongly biased against short events.

For WFIRST 1-D parallaxes, the situation is
clearly intermediate between the 0-D parallaxes of Sumi
et al. (2011) and the 2-D parallaxes of Calchi Novati et
al. (2015). The great potential value of WFIRST 1-
D parallaxes (i.e., much stronger statistical statement
about BDs and FFPs) would be almost completely lost
if these substellar objects were systematically excluded
from the 1-D parallax sample. Given the σ(Λ‖) ∝ t

−3/2
E

behavior of Equation (35) (also see Figure 3), this is
exactly what would happen in the absence of a ground-
based complementary survey. The addition of such a
survey would enable 1-D parallax measurements across
the entire range of timescale tE & 2 hrs for disk lenses.

4.4.2. Complete Solutions From πE,‖ Plus µrel

A complete solution of the lens (or the lens system) can
be derived by combining the πE,‖ measurement from
the light curve and the µrel measurement from high-
resolution imaging (Ghosh et al. 2004; Gould 2014a),
based on the definition of tE (Equation 1) and the fact
that πE and µrel are along the same direction.3

3Because πE,‖ is measured in the geocentric frame but µrel is
measured in the heliocentric frame, one must be careful when
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The measurement of µrel can be done by WFIRST

alone, using its ∼40,000 high-resolution images, for rel-
atively luminous (& early M-dwarfs) lenses (Bennett et
al. 2007). Late-time high-resolution follow-up imaging
can extend the domain of coverage to all luminous lenses
(i.e., M > 0.08M⊙) and can also improve the precision,
as well as resolving certain ambiguities that we discuss
in Section 4.3. Such imaging has already achieved im-
portant results using HST (Alcock et al. 2001; Bennett
et al. 2015) and Keck (Batista et al. 2015), but will po-
tentially be much more powerful using next generation
telescopes (Gould 2014a; Henderson 2015)

Before proceeding, one may ask why one would
need microlensing mass and distance measurements for
a (subsequently) resolved lens, since photometric esti-
mates would then be available. As pointed out by Gould
(2014a), the answer is two-fold. First, one would al-
ways prefer measurements to estimates. Second, high-
resolution imaging alone may not identify the correct
microlenses. Because roughly 2/3 of all stars are in
binaries, and since the lensing cross section scales as
θE ∝ M1/2, of order 1/3 of the events due to binaries
will in fact be generated by the lower-mass (and gener-
ally fainter) companion. In the majority of such cases,
the star that actually generated the event will not be
visible, because it is either unresolved or dark. Hence,
for tens of percent of cases, the lens would be misidenti-
fied by such simple imaging. Gould (2014a) shows how
these cases can be identified and resolved by a combi-
nation of 1-D parallaxes and imaging.

A large homogeneous sample of events with both
πE,‖ and µrel measurements has several benefits. First,
it would permit one to derive a Galactic model (rather
than assuming one). Second, it would permit one to
measure the lens mass function over the range of masses
that are probed. Third, for all the planetary events in
this sample, one would gain a precise mass measurement
of the host and thus (in almost all cases) of the planet.

Even without a complementary ground-based sur-
vey, all of these benefits could be derived at least par-
tially from WFIRST observations themselves. How-
ever, these observations alone would probe only the
upper half or so of the mass function, partly because
WFIRST -only 1-D parallax measurements require long-
timescale events, and partly because WFIRST proper
motion measurements require luminous lenses. Sim-
ilarly, the masses of planets orbiting low-mass hosts
would remain undetermined.

Hence, complementary ground-based survey obser-
vations are crucial to probe the low-mass stellar and
substellar lenses.

4.5. Value of πE Measurements

As discussed following Equation (24), the 2-D paral-
lax measurements are biased toward substellar objects.
These are exactly the objects that are inaccessible to the
conversion of 1-D parallaxes to complete solutions that

combining these two measurements. See Gould (2014a) for
more details.

was discussed in Section 4.4.2. These 2-D parallax mea-
surements enable us to directly derive the complete so-
lutions purely from the microlensing light curves for the
roughly 50% of all planetary and binary events in which
θE can be measured (Zhu et al. 2014). See Section 6 for
details. While most of these 2-D parallax measurements
in single-lens events will not yield complete solutions
(but see Section 5), Calchi Novati et al. (2015) have
shown that 2-D parallax measurements, when combined
with a Galactic model, give tight constraints on mass
and distance, particularly for disk lenses. This is impor-
tant not only to further constrain the substellar mass
function relative to the analysis that is possible based
on 1-D parallaxes (Section 4.4.1), but also for a more
detailed understanding of individual objects.

5. EINSTEIN RADIUS MEASUREMENTS: θE
The particular interest of the θE measurement is that
if there is also a measurement of πE, then it yields a
complete solution (i.e., mass, distance and transverse
velocity).

5.1. WFIRST-only Einstein-Radius Measurements

In the case of single-lens events, if the lens transits the
source, then the light curve is distorted by the finite
source effect, which yields ρ ≡ θ∗/θE, the ratio of the
source radius to the angular Einstein radius. Because
θ∗ can be determined from the dereddened color and
magnitude of the source (Yoo et al. 2004), this yields
a measurement of θE and so also of the proper motion
µrel = θE/tE (Gould 1994a). Such transits occur with
probability ∼ ρ,4 which is typically of order ∼ 3× 10−3

for main-sequence sources and and ∼ 3×10−2 for giant
sources.

When the observational bias is taken into account,
the number of single-lens events with finite-source ef-
fects should be more than what one would naively es-
timate based purely on the above transit probability.
Single-lens events with finite-source effects can reach
extremely high magnifications, so they can be detected
even though the source stars at baseline are extremely
faint. For example, an M6 dwarf in the Bulge has
H = 26 (assuming an extinction of AH = 0.5) and
an angular radius θ⋆ = 0.06µas, and can be magni-
fied in brightness by Amax = 2/ρ when a lens tran-
sits exactly through its center. For a Neptune-mass
Bulge lens, this event will reach H = 21 at its peak.
WFIRST can therefore obtain on average one observa-
tion during the entire transit with a photometric preci-
sion of 1.4%, which would yield a precise measurement
of ρ.5 Hence if the lens is more massive than Nep-

4For ground-based observations, u0 < ρ is required in order to
detect the finite-source effect, but for WFIRST, because of its
much better photometry and the unblended source (almost al-
ways), the maximum allowed u0 can be somewhat bigger than
ρ.

5We use Spitzer event OGLE-2015-BLG-0763 as an example to
prove this. There was only one Spitzer observation with pho-
tometric precision of 1.2% when the lens transited the source
of OGLE-2015-BLG-0763, but the uncertainty on ρ is already
limited to 2.3% level (Zhu et al. 201b).
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tune, then essentially all luminous stars in the Bulge
can serve as source stars for events with measurable
finite-source effects. For Earth-mass Bulge lenses, 2%
precision can be reached for individual measurements
of M4 (M ∼ 0.25M⊙, R ∼ 0.25R⊙) sources, yield-
ing similar quality θE determinations (since there are
on average 2 measurements per transit). Therefore, al-
though small stars are disfavored by their small angular
size, they contribute more significantly to the number
of single-lens events with finite-source effects, than they
do to the number of all detectable single-lens events.

5.2. WFIRST + Ground Einstein-Radius Measurements
In this subsection, we wish to understand how the ad-
dition of a ground-based network contributes to the fre-
quency of such θE measurements. The answer is: quite
modestly. There are two issues. First, an aggressive
ground-based network will only observe the WFIRST
field about half the time. Since the source crossings typ-
ically last only about 1–2 hours, it is this instantaneous
coverage that matters rather than daily coverage. Sec-
ond, if the source size, projected on the observer plane
(ρAU/πE) is larger than the Earth-satellite projected
separation Dsat,⊥, then the probability that the source
will transit at least one of the two observers is not sub-
stantially increased. That is, if the ground observatory
is taking observations at the time of the peak, it can
roughly double this probability provided that

ρAU

πEDsat,⊥
= 100

θ∗
πrel

secψ < 1. (37)

That is,

πrel > 60µas

(

θ∗
0.6µas

)−1

secψ , (38)

where we have normalized to the angular radius of
a typical solar-type source. Thus, for main sequence
sources, the simultaneous ground-based observations
contribute θE measurements for disk lenses but not
Bulge lenses. The situation is even less favorable for
sub-giant and giant sources, which are a small minority
of all sources but a larger fraction of all finite-source
events due to their larger size (Zhu et al. 201b). In
brief, we expect that the ground-based survey will add
only 10–20% to the rate of θE measurements. This is
small enough to ignore for present purposes.

5.3. Value of θE Measurements
The main value of θE measurements, which come pri-
marily from WFIRST observations alone, is derived
from combining them with the vector πE measure-
ments, which come primarily from combining WFIRST
and ground-based survey data. We therefore evaluate
the conditional probability that θE is measurable given
that πE is measured.

The impact parameter as seen from Earth, u0,⊕,
that would allow for a πE measurement is limited by

(S/N)th ≤ πE
σ(πE,⊥)

=
ΛDsat,⊥
σ2(teff)

, (39)

where (S/N)th is the threshold for claiming a reli-
able detection. By approximating u

3/2
0 h2(u0) ∝ uα0

(α ≈ 1.7) in Equation (22), we can derive the maxi-
mum allowed impact parameter u0,⊕,max

u0,⊕,max ∝
(

ΛDsat,⊥
(S/N)th

)1/α(
Fs

σ0

)1/α(
Γ⊕
tE

)1/(2α)

.

(40)
The impact parameter as seen from WFIRST is given
by u0,W = u0,⊕+∆u0, where ∆u0 is related to πE,⊥ by
Equation (4). For 0.1 days≤ tE ≤ 3 days and below sky
sources as seen from Earth, one can easily prove that
∆u0 . u0,⊕,max, so that the maximum allowed impact
parameter as seen from WFIRST, u0,W,max, is similar
to u0,⊕,max. Then the conditional probability can be
estimated as

P =
ρ

u0,W,max
=

θ⋆
µreltEu0,W,max

. (41)

The stellar angular radius θ⋆ is also related to the stellar
flux Fs: θ⋆ ∝ F β

s , and we take β ≈ 0.3 as a reasonable
value for I band.6 By only keeping Fs and tE, we find

P ∝ F β−1/α
s t

1/(2α)−1
E ≈ F−0.3

s t−0.7
E . (42)

Hence, this conditional probability is only weakly de-
pendent on source flux and has a substantially stronger
dependence on Einstein timescale.

Following the above θ⋆ ∝ F 0.3
s relation, we

adopt θ∗ = 0.15µas 100.12(23.5−I0) and use σ2(teff) ∝
u
3/2
0 h2(u0) to evaluate P numerically and show the re-

sults in Figure 2. In doing so, we do not count any
events for which P > 1, since this implies that the
source is too big to permit high-enough magnification
for teff to be measured. Figure 2 shows that complete
mass measurements peak at roughly 0.2 days for Bulge
lenses and 0.1 days for Disk lenses, where in both cases
they constitute roughly half of the 2-D parallax mea-
surements.

6. COMPLETE SOLUTIONS FOR PLANETARY AND
BINARY EVENTS

Finally, although the complete solutions (πE plus θE)
for isolated stellar-mass lenses will be rare, such mea-
surements are much more common for planetary and
binary events, because roughly half of the recognizable
such events will show steep features due to caustic cross-
ings and cusp crossings. For these, measurement of θE
by WFIRST will be virtually automatic. Moreover,
these events will also have greatly enhanced 2-D paral-
lax measurements by three different channels.

First, An & Gould (2001) argued that caustic cross-
ing events yield full 2-D parallaxes much more easily
than events without sharp features (either single-lens

6This value is derived by linear interpolating the log θ⋆ − logFI

relation between Sun (θ⋆ = 0.6µas, MI = 4) and a typical mid-
M dwarf (θ⋆ = 0.15µas, MI = 9) in the Bulge. See, for example,
Boyajian et al. (2014) for more realistic relations between the
stellar angular radius θ⋆ and stellar observables (e.g., apparent
magnitudes and photometric colors).



WFIRST Plus Ground-Based Microlensing Telescope Network 103

events or non-caustic-crossing multiple lenses). The
sharp features break the continuous degeneracies among
the parameters that are even in t. They also break the
symmetry of the lightcurve, which is the fundamental
cause of the fourth-order time dependence of πE,⊥ found
by Smith et al. (2003) for single-lens events. While
there has been no firm proof that this is the case, there
is substantial circumstantial evidence from the high
fraction of planetary lenses with well-determined paral-
laxes relative to single lens events of similar (u0, tE, fs).
Hence, it is likely that WFIRST will by itself mea-
sure many 2-D parallaxes of caustic-crossing binary and
planetary events, particularly for those with timescales
tE & 7 days, for which the corresponding single-lens
events show good 1-D parallax measurements. See Fig-
ure 3.

Second, events with two caustic crossings observed
from both WFIRST and the ground can also yield 2-
D parallax determinations based on two ∆tcc measure-
ments, one at each crossing. Here ∆tcc is the difference
of the caustic crossing time as seen from WFIRST and
the ground. When they proposed the method of paral-
lax observations of caustic crossings, Hardy & Walker
(1995) already recognized that these yield only 1-D in-
formation because small displacements along the direc-
tion parallel to the caustic do not generate substantial
changes in the lightcurve. This is in striking contrast to
single lenses, for which displacements in both directions
induce effects of the same order. See Figure 1. Graff
& Gould (2002) pointed out that this problem could be
solved if there were two caustic crossings (which is typi-
cal of most events, i.e., entrance and exit) provided that
the caustics themselves are not approximately parallel.
Zhu et al. (2015) and Shvartzvald et al. (2015) showed
in practice that binary events with only one ∆tcc mea-
surement are subject to both discrete and continuous
degeneracies.

One shortcoming of this approach with regard to
WFIRST is that, given a network of three southern
hemisphere telescopes, each caustic crossing can be ob-
served from the ground with approximately 50% prob-
ability simply because the bulge is visible from each ob-
servatory only about 4 hours per night, averaged over
the WFIRST campaign. This emphasizes the impor-
tance of having a network, but also of increasing it to
as many independent locations as possible. For the ex-
ample of the KMTNet network, adding a node in Hawaii
would be valuable.

Yet a third channel would be to combine the
WFIRST 1-D orbital parallax measurement with one
∆tcc measurement, for the case that there is only one,
either because the second crossing was missed from the
ground or because the geometry of the event only had
one crossing (e.g., Shvartzvald et al. 2015). As in the
previous approach there are constraints on the orienta-
tion of the caustic: it cannot be too close to perpen-
dicular to n̂. This method may be the most frequently
employed for shorter events, because, if the probability
of catching a single crossing is p = 50%, then the ra-
tio of one measured ∆tcc to two such measurements is

(2/p− 1) → 3.
A full analysis of the measurability of such paral-

laxes lies well beyond the scope for the present work but
we believe that this should be actively investigated.

7. AUXILIARY BENEFITS OF WFIRST
MICROLENSING IN OPTICAL FIELDS

Complementary ground-based survey observations of
the WFIRST microlensing fields have additional ma-
jor benefits. First, ground-based surveys will be sensi-
tive to planets in the wings of the events, in particular
during the roughly 180 days (or 110 days) of a given
year when WFIRST is not observing. Of course, the
ground-based sensitivity to planets will be much lower
than would be the case for WFIRST if it were observ-
ing. However, since it is not, this opens up completely
new parameter space. While in some sense this pa-
rameter space is already available from ground-based
surveys alone, the WFIRST sample is unique in its
sensitivity to low mass planets. Hence, the addition
of a ground-based survey would significantly enhance
our understanding of the relation between the relatively
close-in terrestrial planets that WFIRST is sensitive to
and the more distant ice and gas giants that ground-
based surveys are most sensitive to.

Second, it is likely that the characterization of mi-
crolensing sources and lenses (as well as other field
stars) will benefit from follow-up observations, either
individually or on a systematic basis. Such character-
ization is likely to benefit from the option of utilizing
optical bands, and this would be greatly facilitated by
observing low-to-moderate extinction fields.

8. DISCUSSION

We propose here to augment the WFIRST microlens-
ing campaigns with simultaneous observations from a
ground-based network of wide-field survey telescopes,
in order to 1) enable 1-D microlens parallax measure-
ments over the entire mass range M & M⊕, and 2)
yield 2-D parallax measurements for a significant frac-
tion of short-timescale (tE . 3 days) events and plan-
etary/binary events. The 1-D parallax measurements
can be used to produce complete solutions (mass, dis-
tance, transverse velocity) of the luminous lens systems
(M & 0.08M⊙), once combined with the measurements
of the lens-source relative proper motion µrel that come
from WFIRST and/or ground-based follow-up high-
resolution imaging. The 2-D parallax measurements
will be especially useful for better understanding the
substellar population. For the roughly 50% of plane-
tary and binary events with caustic crossings, and for a
significant fraction of FFP events, the angular Einstein
radius θE is also measured, and thus these 2-D parallax
measurements directly lead to complete solution of the
lens (or the lens system).

Our methodology applies as well to any other ded-
icated microlensing surveys that are conducted at L2,
such as Euclid (Penny et al. 2013).

Because WFIRST launch is almost a decade in
the future, one might in principle consider complemen-
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tary observations from many different ground-based
networks and/or individual telescopes. For example,
one might consider a network of infrared and/or opti-
cal telescopes of various apertures and field sizes (e.g.,
similar to the ground-based network to support the K2
microlensing campaign, Henderson et al. 2015). Here,
we have initiated such an investigation by considering
an optical, KMTNet-like network, simply because these
telescopes exist and it would not be trivial to build a
new network with substantially greater capability. The
KMTNet microlensing campaign is scheduled to last 5
years and thus is expected to end before the launch of
WFIRST. Hence, coordination of KMTNet in particu-
lar with WFIRST would also require advance planning,
and this is another reason to begin serious evaluation of
the benefits of such complementary observations now.

As pointed out ealier, augmenting WFIRST mi-
crolensing campaigns with simultaneous optical obser-
vations from a KMTNet-like telescope network requires
that WFIRST is pointed at lower-extinction fields than
is currently envisaged. Such a shift in the WFIRST
microlensing fields would come with a moderate loss in
the expected event rate. For example, if regions are
excluded where the optical extinction AI > 2, which
is approximately any Galactic latitude b above −1.5◦

(Nataf et al. 2013), the number of WFIRST planet de-
tections would be reduced by 20%, compared to the
yield based on its currently proposed fields (Figure 2-
29 of Spergel et al. 2015). This cost has to be weighed
against all the benefits that have been discussed above.

At first sight, it might appear that KMTNet would
be ill-matched to WFIRST. From the standpoint of
finding planets, WFIRST will be vastly superior. How-
ever, the problem of augmentingWFIRST observations
in order to measure parallaxes given a ∼0.01 AU dis-
placement from WFIRST is far less challenging than
finding planets from the ground. Hence, as we have
shown (see, e.g., Figures 2 and 3), even 1.6m wide-
field telescopes can yield excellent results for a very
large fraction of events for which WFIRST is sensitive
to planets, including FFPs. The WFIRST saturation
magnitude might be another potential concern when
complementing WFIRST with ground-based 1.6m tele-
scopes. However, Gould et al. (2015) have shown this
is not the case for near infrared cameras (see their Fig-
ure 1).
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APPENDIX A. FISHER MATRIX ANALYSIS FOR
GENERAL CASES

The general point-lens point-source light curve is de-
scribed by Equation (11). With this as well as Equa-
tions (12), (13), (14), and (15), the Fisher matrix can
be evaluated

bij =
Γ

σ2
0


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Then the covariance matrix is
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where
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and
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Therefore,
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These expressions apply to both ground-based obser-
vations and WFIRST observations (below sky limit).
Here r(u0, tE) is the correlation coefficient between u0
and tE, and only depends on u0. We numerically find
that −1 ≤ r(u0, tE) ≤ −0.977 for u0 ≥ 0 with the max-
imum achieved at u0 = 0.127, and that r(u0, tE) →
0.997 as u0 → 1.0. Therefore, parameters u0 and tE are
strongly anti-correlated.

We are interested in σ(t0) and σ(teff), which are
written in forms of Equations (21) and (22). The former
is already given in Equation (48), and we further write
it in a closed form

σ(t0) =

√

8

π

tE
Γ

σ0
Fs
u
3/2
0 g(u0) , (49)
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where

g(u0) ≡
√

π

8
u
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0 C

−1/2
0
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[
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(50)

There are two ways to determine σ(teff): by ground-
based observations alone, and by incorporating the
WFIRST constraint on tE. We discuss these two cases
in turn.

The ground-based observations alone yield

σ1(teff) =
√

t2Eσ
2(u0) + u20σ

2(tE) + 2tEu0rσ(u0)σ(tE)

=
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Here r = r(u0, tE), and
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√
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(52)
Note that one can show analytically that h1(0) = 1.

To incorporate the constraint on tE from WFIRST,
we initially assume that tE is known perfectly from
WFIRST. This assumption has two requirements
that must be specifically evaluated: 1) σ(tE) from
WFIRST is extremely small compared to σ(tE) from
the ground; 2) the difference between tE as seen from
Earth and WFIRST is effectively small. We will quan-
tify these further below.

With perfect knowledge on tE, σ2(teff) = tEσ(u0),
one can derive from the general case Fisher matrix
(Equation 43)

σ2(teff) =

√

8

π

tE
Γ

σ0
Fs
u
3/2
0 h2(u0) , (53)

where

h2(u0) =

[

π

8u50

C5

C1C5 − C2
2

]1/2

. (54)

The functions g(u0), h1(u0) and h2(u0) are illustrated
in Figure 1.

We now investigate the condition for the assump-
tion that tE is perfectly known. The covariance matrix
of u0 and tE from ground-based observations is

(

σ2
⊕(u0) rσ⊕(u0)σ⊕(tE)

rσ⊕(u0)σ⊕(tE) σ2
⊕(tE)

)

. (55)

Here r is the correlation coefficient. Let σW(tE) be the
constraint on tE from WFIRST observations. Then af-
ter some algebra one can derive the combined constraint
on u0 as

σ2(u0) =
σ2
W(tE) + 2(1 + r)σ2

⊕(tE)

(1 + r)σ2
W(tE)/2 + σ2

⊕(tE)
σ2
⊕(u0)

≈
[

σ2
W(tE)

σ2
⊕(tE)

+ 2(r + 1)

]

σ2
⊕(u0)

→ 2(r + 1)σ2
⊕(u0) . (56)

In the first approximation we have used the fact that
σW(tE) ≪ σ⊕(tE), and the last step further assumes
a perfect knowledge of tE (i.e., σW(tE) = 0). This as-
sumption remains valid as long as

σW(tE)

σ⊕(tE)
≪
√

2(r + 1) . (57)

A typical value for the right-hand side is 0.15. Here
σW(tE) can be not only the statistical uncertainty on
tE from WFIRST observations, but also the system-
atic uncertainty on tE as seen from Earth because of
the relative velocity between WFIRST and Earth. We
discuss the latter case in the next section. In the for-
mer case, if the source as seen from WFIRST is also
below sky, then with σ(tE) from Equation (48) one
easily finds that the above condition (Equation 57) is
always met. For example, for the typical (reddened)
source colors (I − H = 1.8) and our adopted normal-
izations7, as well as a sky noise limit of H = 22.3 we
get σW(tE)/σ⊕(tE) = (0.01/0.05)× 100.4(18−20.2−1.8) ×
100.2(20.2−22.3) = 1/520 ∼ 0.002. The situation is not
so favorable if the source as seen by WFIRST is above
sky especially when it is toward the peak, but since the
tE measurement depends mostly on the wings of the
light curve and all that is required is a factor ≪0.15,
this condition is still likely to be satisfied in almost all
cases.

APPENDIX B. DIFFERENCE BETWEEN tE,⊕ AND tE,W

The difference between timescales as observed from
Earth and WFIRST is the systematic uncertainty in
imposing WFIRST tE information on ground-based ob-
servations. Below we show that this difference is negli-
gible for the majority of WFIRST events that can be
observed by ground-based surveys.

We first denote v⊕,⊥ and vW,⊥ as the velocities of
Earth and WFIRST transverse to the line of sight, and
∆v⊥ ≡ vW,⊥ − v⊕,⊥. Then

∆tE
t2E

≈
∣
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(58)
where r̃E = AU/πE is the projected Einstein radius
and ṽgeo is the transverse velocity of the event in the
geocentric frame. By the triangle inequality |ṽgeo +
∆v⊥| ≤ ṽgeo +∆v⊥, we can rewrite the above equation
as

∆tE
t2E

.
∆v⊥
r̃E

=
∆v⊥
tEṽ

. (59)

The orbit of WFIRST is very likely to be a Lissajous
orbit around L2. For our purpose, we simplify it as a

7We adopt Γ⊕ = 240 day−1 and ΓW = 100 day−1, and assume
1% WFIRST photometry at H = 20.2 and 5% ground-based
photometry at I = 18.
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circular orbit with period Psat = 180 days and radius
Rsat = 2.7× 105 km around L2. Thus, we find

∆v⊥ ≤ 2πRsat

Psat
+Ω⊕Dsat| sinψ| ≤ 0.29 km s−1 . (60)

where we have taken into account that |ψ| ≤ 35◦ during
each campaign. The difference in tE is then limited to

∆tE
tE

.
∆v⊥
ṽ

< 2.9× 10−4

(

ṽ

103 km s−1

)−1

. (61)

This means that even when WFIRST can constrain its
own timescale tE,W extremely well, the timescale of the
same event as seen from Earth is still uncertain within
up to 0.024% (0.086%) for typical Bulge (disk) events.

However, as long as the constraint on tE,⊕ from
ground-based observations alone, σg(tE), is significantly
worse than the systematic uncertainty ∆tE derived
above, tE,⊕ can be treated at “perfectly” known and
then Equation (53) applies. Quantitatively, this re-
quires σg(tE) ≫ ∆tE/

√

2[1 + r(u0, tE)], or

1
√

Γ⊕tE

σ0,⊕
Fs,⊕

√

C1C5 − C2
2

D
≫

1.5× 10−3

(

ṽ

103 km s−1

)−1

×
(

1 + r(u0, tE)

0.02

)−1/2

(62)

Numerically we find that

√

C1C5 − C2
2

D
≥ 30u

3/2
0 (63)

for u0 > 0 and that the minimum is achieved at u0 =
0.43, based on which we can further write the above
inequality as

σ0,⊕
Fs,⊕

≫ 7.5× 10−4

(

tE
1 day

)1/2(
Γ⊕

240 day−1

)1/2

×
(

ṽ

103 km s−1

)−1 [
u30(1 + r(u0, tE))

0.02

]−1/2

(64)

This is the condition of Equation (57) specified in the
systematic limit regime.

For u0 ≥ 0.2, the last term in the above inequality
introduces a factor ≤ 10, and thus for WFIRST tar-
gets observed with ground-based telescopes, this con-
dition can almost always be satisfied. For smaller u0,
the above condition may not be satisfied for relatively
bright sources, but the breaking down of the assumption
does not make much difference, as the case of “unknown
tE” (h1(u0) curve in Figure 1) is only worse by a factor
≤ 1.7 compared the case of “known tE” (h2(u0) curve
in Figure 1).
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