• Title/Summary/Keyword: 3D Mesh

Search Result 792, Processing Time 0.027 seconds

Relationship Between the Body Dimension of Sea Eel , Astroconger Myriaster and the Mesh Size of Fishing Gears (붕장어의 어체제원과 어구강목과의 관계)

  • 장충식
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.23 no.4
    • /
    • pp.184-188
    • /
    • 1987
  • The author studied to analyse the relationship between the body dimension of sea eel, Astroconger myriaster and the mesh size of fishing gears. The samples were caught by traps and pots during September, 1987 in the Southern Sea of Korea. The results obtained can be summarized as follows: 1. The relationship between total length L, body weight W and diameter D may be expressed as: W=3.58$\times$10 super(-4) L super(3.38) (r=0.99). D=0.07 L-0.59 (r=0.99). W=10.38 D super(2.76) (r=1.00). W=1/2$\times$D super(2).L. 2. The mesh size of traps and the hole diameter of post must be more than 29.2 mm and 18.6 mm, respectively.

  • PDF

Efficient 3D Object Simplification Algorithm Using 2D Planar Sampling and Wavelet Transform (2D 평면 표본화와 웨이브릿 변환을 이용한 효율적인 3차원 객체 간소화 알고리즘)

  • 장명호;이행석;한규필;박양우
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.31 no.5_6
    • /
    • pp.297-304
    • /
    • 2004
  • In this paper, a mesh simplification algorithm based on wavelet transform and 2D planar sampling is proposed for efficient handling of 3D objects in computer applications. Since 3D vertices are directly transformed with wavelets in conventional mesh compression and simplification algorithms, it is difficult to solve tiling optimization problems which reconnect vertices into faces in the synthesis stage highly demanding vertex connectivities. However, a 3D mesh is sampled onto 2D planes and 2D polygons on the planes are independently simplified in the proposed algorithm. Accordingly, the transform of 2D polygons is very tractable and their connection information Is replaced with a sequence of vertices. The vertex sequence of the 2D polygons on each plane is analyzed with wavelets and the transformed data are simplified by removing small wavelet coefficients which are not dominant in the subjective quality of its shape. Therefore, the proposed algorithm is able to change the mesh level-of-detail simply by controlling the distance of 2D sampling planes and the selective removal of wavelet coefficients. Experimental results show that the proposed algorithm is a simple and efficient simplification technique with less external distortion.

Three-Dimensional Finite Element Mesh Generation of Tires Considering Detailed Tread Patterns (상세 트레드 패턴을 반영한 3차원 타이어 메쉬 생성)

  • Cho, J.R.;Kim, K.W.;Hong, S.I.;Kim, N.J.;Kim, K.W.
    • Proceedings of the KSME Conference
    • /
    • 2001.11a
    • /
    • pp.330-335
    • /
    • 2001
  • While contacting directly with ground, the tire tread part is in shape of complex patterns of variable ASDs(anti-skid depth) for various tire performances. However, owing to the painstaking mesh generation job and the extremely long CPU-time, conventional 3-D tire analyses have been performed by either neglecting tread pattern or modeling circumferential grooves only. As a result, such simplified analysis models lead to considerably poor numerical expectations. This paper addresses the development of a systematic 3-D mesh generation of tires considering the detailed tread pattern. Basically, tire body and tread meshes are separately generated, and then both are to be combined. For the systematic mesh generation, which consists of a series of meshing steps, we develop in-house subroutines which utilize the useful functions of I-DEAS solid modeler. The detailed pattern mesh can be imparted partially or completely.

  • PDF

3-D Analysis of Hot Forging Processes using the Mesh Compression Method (격자압축법을 이용한 3차원 열간단조공정해석)

  • 홍진태;양동열;이석렬
    • Transactions of Materials Processing
    • /
    • v.11 no.2
    • /
    • pp.179-186
    • /
    • 2002
  • In the finite element analysis of metal forming Processes using general Lagrangian formulation, element nodes in the mesh move and elements are distorted as the material is deformed. The excessive degeneracy of mesh interrupts finite element analysis and thus increases the error of plastic deformation energy, In this study, a remeshing scheme using so-called mesh compression method is proposed to effectively analyze the flash which is generated usually in hot forging processes. In order to verify the effectiveness of the method, several examples are tested in two-dimensional and three-dimensional problems.

Photorealistic Real-Time Dense 3D Mesh Mapping for AUV (자율 수중 로봇을 위한 사실적인 실시간 고밀도 3차원 Mesh 지도 작성)

  • Jungwoo Lee;Younggun Cho
    • The Journal of Korea Robotics Society
    • /
    • v.19 no.2
    • /
    • pp.188-195
    • /
    • 2024
  • This paper proposes a photorealistic real-time dense 3D mapping system that utilizes a neural network-based image enhancement method and mesh-based map representation. Due to the characteristics of the underwater environment, where problems such as hazing and low contrast occur, it is hard to apply conventional simultaneous localization and mapping (SLAM) methods. At the same time, the behavior of Autonomous Underwater Vehicle (AUV) is computationally constrained. In this paper, we utilize a neural network-based image enhancement method to improve pose estimation and mapping quality and apply a sliding window-based mesh expansion method to enable lightweight, fast, and photorealistic mapping. To validate our results, we utilize real-world and indoor synthetic datasets. We performed qualitative validation with the real-world dataset and quantitative validation by modeling images from the indoor synthetic dataset as underwater scenes.

A Blind Watermarking for 3-D Mesh Sequence Using Temporal Wavelet Transform of Vertex Norms (꼭지점 좌표 벡터 크기값의 시간축 웨이블릿 변환을 이용한 3차원 메쉬 시퀀스의 블라인드 워터마킹)

  • Kim, Min-Su;Cho, Jae-Won;Prost, Remy;Jung, Ho-Youl
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.3C
    • /
    • pp.256-268
    • /
    • 2007
  • In this paper, we present a watermarking method for 3-D mesh sequences. The main idea is to transform vertex norm with the identical connectivity index along temporal axis using wavelet transform and modify the distribution of wavelet coefficients in temporally high (or middle) frequency frames according to watermark bit to be embedded. All vertices are divided into groups, namely bin, using the distribution of coefficients in low frequency frames. As the vertices with the identical connectivity index over whole frames belong to one bin, their wavelet coefficients are also assigned into the same bin. Then, the watermark is embedded into the wavelet coefficients of vertex norm. Due to the use of the distribution, our method can retrieve the hidden watermark without any information about original mesh sequences in the process of watermark detection. Through simulations, we show that the proposed is flirty robust against various attacks that are probably concerned in copyright protection of 3-D mesh sequences.

A Study on Mesh Refinement for 3-D Adaptive Finite Element Method Using Tetrahedral Element (3차원 적응 유한요소법을 위한 사면체 요소세분에 관한 연구)

  • 김형석;정현교;한송엽
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.39 no.9
    • /
    • pp.921-927
    • /
    • 1990
  • This paper presents a mesh refinement scheme for 3-D adaptive finite element method. Firstly, the refinement of triangular meshes based on the bisection of triangles is discussed. And a new method to refine tetrahedral meshes employing the bisection method is presented. In two dimensional cases, it has been noted that all angles in the triangular meshes refined by the bisection method are greater than or equal to half the smallest angle in the original meshes. Through the examples where the newly proposed method is applied to three dimensional cases, it is shown that regarding the solid angles, the method gives nearly the same result as that in the two dimensional case. Accordingly, it can be concluded that the proposed method will be useful in the mesh refinements for 3-D adaptive finite element method.

  • PDF

preprocessing methodology to reducing calculation errors in 3 dimensional model for development of heat transfer analysis program for 3 dimensional structure of building (건물의 3차원 구조체에 대한 전열해석 프로그램 개발 중 3차원 모델의 해석 오류 저감을 위한 사전 수정 방법 연구)

  • Lee, Kyusung;Lee, Juhee;Lee, Yongjun
    • KIEAE Journal
    • /
    • v.16 no.1
    • /
    • pp.89-94
    • /
    • 2016
  • This study is part of three-dimensional(3D) heat transfer analysis program developmental process. The program is being developed without it's own built in 3D-modeller. So 3D-model must be created from another 3D-modeller such as generic CAD programs and imported to the developed program. After that, according to the 3D-geometric data form imported model, 3D-mesh created for numerical calculation. But the 3D-model created from another 3D-modeller is likely to have errors in it's geometric data such as mismatch of position between vertexes or surfaces. these errors make it difficult to create 3D-mesh for calculation. These errors are must be detected and cured in the pre-process before creating 3D-mesh. So, in this study four kinds of filters and functions are developed and tested. Firstly, 'vertex error filter' is developed for detecting and curing for position data errors between vertexes. Secondly, 'normal vector error filter' is developed for errors of surface's normal vector in 3D-model. Thirdly, 'intersection filter' is developed for extracting and creating intersection surface between adjacent objects. fourthly, 'polygon-line filter' is developed for indicating outlines of object in 3D-model. the developed filters and functions were tested on several shapes of 3D-models. and confirmed applicability. these developed filters and functions will be applied to the developed program and tested and modified continuously for less errors and more accuracy.

Building Large-scale CityGML Feature for Digital 3D Infrastructure (디지털 3D 인프라 구축을 위한 대규모 CityGML 객체 생성 방법)

  • Jang, Hanme;Kim, HyunJun;Kang, HyeYoung
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.39 no.3
    • /
    • pp.187-201
    • /
    • 2021
  • Recently, the demand for a 3D urban spatial information infrastructure for storing, operating, and analyzing a large number of digital data produced in cities is increasing. CityGML is a 3D spatial information data standard of OGC (Open Geospatial Consortium), which has strengths in the exchange and attribute expression of city data. Cases of constructing 3D urban spatial data in CityGML format has emerged on several cities such as Singapore and New York. However, the current ecosystem for the creation and editing of CityGML data is limited in constructing CityGML data on a large scale because of lack of completeness compared to commercial programs used to construct 3D data such as sketchup or 3d max. Therefore, in this study, a method of constructing CityGML data is proposed using commercial 3D mesh data and 2D polygons that are rapidly and automatically produced through aerial LiDAR (Light Detection and Ranging) or RGB (Red Green Blue) cameras. During the data construction process, the original 3D mesh data was geometrically transformed so that each object could be expressed in various CityGML LoD (Levels of Detail), and attribute information extracted from the 2D spatial information data was used as a supplement to increase the utilization as spatial information. The 3D city features produced in this study are CityGML building, bridge, cityFurniture, road, and tunnel. Data conversion for each feature and property construction method were presented, and visualization and validation were conducted.

View Selection Algorithm for Texturing Using Depth Maps (Depth 정보를 이용한 Texturing 의 View Selection 알고리즘)

  • Han, Hyeon-Deok;Han, Jong-Ki
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2022.06a
    • /
    • pp.1207-1210
    • /
    • 2022
  • 2D 이미지로부터 카메라의 위치 정보를 추정할 수 있는 Structure-from-Motion (SfM) 기술과 dense depth map 을 추정하는 Multi-view Stereo (MVS) 기술을 이용하여 2D 이미지에서 point cloud 와 같은 3D data 를 얻을 수 있다. 3D data 는 VR, AR, 메타버스와 같은 컨텐츠에 사용되기 위한 핵심 요소이다. Point cloud 는 보통 VR, AR, 메타버스와 같은 많은 분야에 이용되기 위해 mesh 형태로 변환된 후 texture 를 입히는 Texturing 과정이 필요하다. 기존의 Texturing 방법에서는 mesh의 face에 사용될 image의 outlier를 제거하기 위해 color 정보만을 이용했다. Color 정보를 이용하는 방법은 mesh 의 face 에 대응되는 image 의 수가 충분히 많고 움직이는 물체에 대한 outlier 에는 효과적이지만 image 의 수가 부족한 경우와 부정확한 카메라 파라미터에 대한 outlier 에는 부족한 성능을 보인다. 본 논문에서는 Texturing 과정의 view selection 에서 depth 정보를 추가로 이용하여 기존 방법의 단점을 보완할 수 있는 방법을 제안한다.

  • PDF