DOI QR코드

DOI QR Code

Building Large-scale CityGML Feature for Digital 3D Infrastructure

디지털 3D 인프라 구축을 위한 대규모 CityGML 객체 생성 방법

  • Received : 2021.05.26
  • Accepted : 2021.06.27
  • Published : 2021.06.30

Abstract

Recently, the demand for a 3D urban spatial information infrastructure for storing, operating, and analyzing a large number of digital data produced in cities is increasing. CityGML is a 3D spatial information data standard of OGC (Open Geospatial Consortium), which has strengths in the exchange and attribute expression of city data. Cases of constructing 3D urban spatial data in CityGML format has emerged on several cities such as Singapore and New York. However, the current ecosystem for the creation and editing of CityGML data is limited in constructing CityGML data on a large scale because of lack of completeness compared to commercial programs used to construct 3D data such as sketchup or 3d max. Therefore, in this study, a method of constructing CityGML data is proposed using commercial 3D mesh data and 2D polygons that are rapidly and automatically produced through aerial LiDAR (Light Detection and Ranging) or RGB (Red Green Blue) cameras. During the data construction process, the original 3D mesh data was geometrically transformed so that each object could be expressed in various CityGML LoD (Levels of Detail), and attribute information extracted from the 2D spatial information data was used as a supplement to increase the utilization as spatial information. The 3D city features produced in this study are CityGML building, bridge, cityFurniture, road, and tunnel. Data conversion for each feature and property construction method were presented, and visualization and validation were conducted.

최근 도시에서 생산되는 수많은 디지털 데이터를 저장, 운용, 분석하기 위한 3차원 도시 공간정보 인프라에 대한 수요가 증가하고 있다. CityGML은 OGC (Open Geospatial Consortium)의 3차원 공간정보 데이터 표준으로서 도시 데이터의 교환 및 속성 표현에 강점을 가지고 있으며, 최근 싱가폴, 뉴욕 등 몇몇 도시를 중심으로 CityGML 형식의 3차원 도시공간 데이터를 구축한 사례가 등장하였다. 그러나 현재 CityGML 데이터의 제작 및 편집을 위한 생태계는 sketchup이나 3d max 등 3차원 데이터 구축에 활용되고 있는 상용프로그램과 비교할 때 완성도가 부족하여 대규모로 CityGML 데이터를 구축하는 데 한계가 있다. 따라서 본 연구에서는 항공 LiDAR (Light Detection and Ranging) 나 RGB (Red Green Blue) 카메라를 이용하여 신속하고 자동으로 제작되는 3D mesh 데이터 및 2차원 폴리곤을 활용하여 3차원 공간정보 표준인 CityGML 데이터를 구축하는 방법을 제시하였다. 데이터 구축과정에서는 각 객체가 다양한 CityGML LoD (Level of Detail)로 표현될 수 있도록 원본 3D mesh 데이터를 변형하였고 공간정보로서 활용도를 높이기 위해 2차원 공간정보 데이터로부터 추출한 속성정보를 보조적으로 활용하였다. 본 연구에서 제작한 도시 3D 객체는 CityGML 건물, 교량, 도시시설물, 도로, 터널이며 객체별 데이터 변환, 속성 구축 방법을 제시하고 가시화 및 유효성 검정을 진행하였다.

Keywords

Acknowledgement

본 연구는 국토교통부 국토공간정보연구사업의 연구비지원(21NSIP-B135774-05)에 의해 수행되었습니다.

References

  1. Bae, S.K., & Kim, J.O. (2021), Detecting underground geospatial features for protection of rights in 3D space: Korean cases. Applied Sciences, 11(3), 1102. (in Korean with English abstract) https://doi.org/10.3390/app11031102
  2. Biljecki, F., Arroyo Ohori, K. (2015). Automatic semanticpreserving conversion between OBJ and CityGML. In UDMV15: Eurographics Workshop on Urban Data Modelling and Visualisation, Delft, The Netherlands, 23 November 2015; Authors version. Eurographics.
  3. Biljecki, F., Ledoux, H., & Stoter, J. (2016). An improved LOD specification for 3D building models. Computers, Environment and Urban Systems, 59, 25-37. https://doi.org/10.1016/j.compenvurbsys.2016.04.005
  4. Biljecki, F., Stoter, J., Ledoux, H., Zlatanova, S., & Coltekin, A. (2015). Applications of 3D city models: State of the art review. ISPRS International Journal of Geo-Information, Vol. 4, No. 4, pp. 2842-2889. https://doi.org/10.3390/ijgi4042842
  5. ESRI. (2008). The Multipatch geometry type, An ESRI white paper, p. 7.
  6. Floros, G., & Dimopoulou, E. (2016). Investigating The enrichment of a 3D city model with various cityGML modules. International Archives of the Photogrammetry, Remote Sensing & Spatial Information Sciences, 42.
  7. Janecka, K. (2019). Transformation of 3D geospatial data into CityGML-a case of Prague, Reports on Geodesy and Geoinformatics, Vol. 107, No. 1, pp. 41-48. https://doi.org/10.2478/rgg-2019-0005
  8. Jovanovic, D., Milovanov, S., Ruskovski, I., Govedarica, M., Sladic, D., Radulovic, A., & Pajic, V. (2020). Building virtual 3D city model for smart cities applications: A case study on campus area of the university of Novi Sad. ISPRS International Journal of Geo-Information, Vol. 9, No. 8, p. 476. https://doi.org/10.3390/ijgi9080476
  9. Kim, H.D., Kang, J.H., & Kim, H.J. (2017). A study on the improvement of 3D building data format for spatial information open platform, Journal of Korean Society for Geospatial Information System, Vol. 25, No. 1, pp. 63-70. (in Korean with English abstract) https://doi.org/10.7319/KOGSIS.2017.25.1.063
  10. Kim, K., Kim, C., Choi, Y. & Cho, G. (2014). 3D modeling of Korean traditional house based on BIM for uploading to spatial information open platform, Journal of Cadastre & Land InformatiX, Vol. 44, No. 1, pp. 91-101. (in Korean with English abstract)
  11. Kim, J. & Yi, S. & Kim, J. & Bae, S. (2014). Spatial data object utilizing the public information, Journal of the Korean Society for Geospatial Information System, Vol. 22, No. 3, pp. 137-143. (in Korean with English abstract) https://doi.org/10.7319/KOGSIS.2014.22.3.137
  12. Ledoux, H. (2018). val3dity: validation of 3D GIS primitives according to the international standards, Open Geospatial Data, Software and Standards, Vol. 3, No. 1, pp. 1-12. https://doi.org/10.1186/s40965-018-0043-x
  13. OGC (2012), OGC city geography markup language(CityGML) encoding standard 2.0.0, OGC 12-019, Open Geospatial Consortium, Wayland, MA, USA.
  14. Park, J. & Cho, W. & Noh, M. & Song, N. & Kim, M. (2008). Improvement scheme for 3D land geospatial information construction, Journal of Korean Society for Geospatial Information Science, Vol. 16, No. 4, pp. 89-99. (in Korean with English abstract)
  15. Park, S. & Lee, J. (2009). Comparative analysis of 3D spatial data models. The Journal of GIS Association of Korea, Vol. 17, No. 3, pp. 277-285. (in Korean with English abstract)
  16. Soon, K.H., & Khoo, V.H.S. (2017). CityGML modelling for Singapore 3d national mapping, International Archives of the Photogrammetry, Remote Sensing & Spatial Information Sciences, 42.
  17. Zhou, Y.W., Hu, Z.Z., Lin, J.R., & Zhang, J.P. (2019). A review on 3D spatial data analytics for building information models, Archives of Computational Methods in Engineering, 1-15.
  18. Zhu, J., Wang, P., & Wang, X. (2018). An assessment of paths for transforming IFC to shapefile for integration of BIM and GIS. IEEE, In 2018 26th International Conference on Geoinformatics, pp. 1-5.