• Title/Summary/Keyword: 2D-hexagonal

Search Result 137, Processing Time 0.032 seconds

Crystallization and Preliminary X-ray diffraction Studies of Salmonella typhimurium Deoxy-Thymidine Diphosphate-D-Glucose-4, 6-Dehydratase (Salmonella typhimurium의 Deoxy-Thymidine Diphosphate-D-Glucose-4, 6-Dehydratase의 결정화와 X-선 회절에 관한 연구)

  • 최희욱;박교선
    • Korean Journal of Crystallography
    • /
    • v.7 no.2
    • /
    • pp.120-125
    • /
    • 1996
  • Single crystals of deoxy-thymidine diphosphate-D-gluxose-4,6-dehydratase(abbreviated as dTDP-D-glucose dehydratase) from Escherichia coli Strain BL21 clone which harbors the gene of dTDP-D-glucose dehydratase in Salmonella typhimurium LT2 have been grown with and whithout substrates by sitting drop vapor diffusion at room temperature. The precipitating agent was 1.6 to 2.0 M Na, K phosphate buffer(pH 8.0). The crystals diffract to at least 2.5Å and belong to the hexagonal space group P61 with cell dimensions a=b=168.54Å, c=81.08Å. The asymmetric unit contains one dimer with a crystal volume per protein mass(VM) of 2.4Å3/Da and solvent content (Vsol) of 64% by volume.

  • PDF

STM Study of Low Dimensional Nanostructures Formed by Adsorption of Dipyrromethane-trimer Molecules on Graphite Surface (흑연 표면에 형성된 dipyrromethene-trimer 분자의 저차원 나노구조의 주사 터널링 현미경 연구)

  • Son, S.B.;Lee, S.J.;Hahn, J.R.;Shin, J.Y.;Dolphin, D.
    • Journal of the Korean Vacuum Society
    • /
    • v.17 no.5
    • /
    • pp.375-380
    • /
    • 2008
  • We have investigated the low-dimensional nanostructures produced by adsorption of triangular Co coplexed dipyrromethane(DPM-trimer, Fig. 1) on graphite surface by using scanning tunneling microscope. DPM-trimer deposition on the graphite surface leads to the formation of long 1-D molecular wires and 2-D hexagonal patterns. We analyzed the heights and structures of 1-D molecular wires and 2-D hexagonal patterns. The 1-D molecular wires were formed 'edge-on' alignments on graphite surface result of continuos $\pi-\pi$ stacking interactions. The other case of 2-D hexagonal patterns were formed 'face-on' alignments on graphite surface.

Novel Quasi-Elliptic Function Bandpass Filter Using Hexagonal Resonators with Capacitive Loading

  • Wang, Changtao;Li, Wenming;Liu, Feng;Liu, Haiwen
    • ETRI Journal
    • /
    • v.30 no.4
    • /
    • pp.615-617
    • /
    • 2008
  • A novel and compact elliptic-function bandpass filter is proposed in this letter. The techniques of slot etching and the addition of open stubs are applied to enhance the self-inductance and self-capacitance of hexagonal open-loop resonators. Thus, size reduction and improved transmission performance are obtained. Compared to the performance of the conventional design, the central frequency and insertion loss are reduced by 28% and 3.1 dB, respectively. Measurements show that the proposed filter has a fraction bandwidth of 23% at the central frequency of 1.84 GHz, and its insertion loss in the passband is less than -1.5 dB. The bandpass filter occupies only 12 mm${\times}$21.2 mm (approximately $0.24{\lambda}_g{\times}0.14{\lambda}_g$).

  • PDF

Controllable Etching of 2-Dimentional Hexagonal Boron Nitride by Using Oxygen Capacitively Coupled Plasma

  • Qu, Deshun;Yoo, Won Jong
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2013.05a
    • /
    • pp.170-170
    • /
    • 2013
  • We present a novel etching technique for 2-dimentional (2-D) hexagonal boron nitride (h-BN) by using capacitively coupled plasma (CCP) of oxygen combined with a post-treatment by de-ionized (DI) water. Oxygen CCP etching process for h-BN has been systematically studied. It is found that a passivation layer was generated to obstruct further etching while it can be easily and radically removed by DI water. An essential cleaning effect also has been observed in the etching process, organic residues are successfully removed and the surface roughness has much decreased. Considering h-BN is the most important 2-D dielectric material and its potential application for graphene to silicon-based electronic devices, such an etching method can be widely used to control the 2-D h-BN thickness and improve the surface quality.

  • PDF

Derivation of Cubic and Hexagonal Mesoporous Silica Films by Spin-coating

  • Pan, Jia-Hong;Lee, Wan-In
    • Bulletin of the Korean Chemical Society
    • /
    • v.26 no.3
    • /
    • pp.418-422
    • /
    • 2005
  • By introducing spin-coating method to the evaporation induced self-assembly (EISA) process, a simple and reproducible route in controlling the mesophase of silica thin films has been developed for the first time in this work. When a comparatively solvent-rich Si-sol (The atomic ratio of TEOS : F127 : HCl : $H_2O$ : EtOH = 1 : 0.006 : 0.2 : 9.2 : 30) was used as coating solution, the mesophase of resultant silica films was selectively controlled by adjusting the spin-on speed. The cubic mesophase has been obtained from the coating at a low rpm, such as 600 rpm, while the 2-D hexagonal mesophase is formed at a high rpm, such as 2,500 rpm. At a medium coating speed, a mixture of cubic and hexagonal mesophase has been found in the fabricated films. The present results confirm that the evaporation rate of volatile components at initial step is critical for the determination of mesopore structures during the EISA process.

Analysis of Light Transmittance according to the Array Structure of Collagen Fibers Constituting the Corneal Stroma (각막실질 콜라겐섬유의 배열구조에 따른 광투과율 분석)

  • Lee, Myoung-Hee;Kim, Young-Chul
    • The Korean Journal of Vision Science
    • /
    • v.20 no.4
    • /
    • pp.561-568
    • /
    • 2018
  • Purpose : The size and regular array of the collagen fibers in the corneal stroma have very close correlation with transparency. Simulation was carried out to investigate the change of light transmittance according to the array structure and collagen fiber layer thickness. Methods : The collagen fibers in corneal stroma were arranged in regular hexagonal, hexagonal, square and random shapes with OptiFDTD simulation software, and the light transmittance was analyzed. In square array, the light transmittance according to the density change was confirmed by when the number of collagen fibers in the simulation space was the same and the light transmittance was examined when the number and density of collagen fibers were changed. Results : When the number of collagen fibers is the same, the density becomes smaller and the thickness of the fibrous layer becomes thicker in order of arrangement of square, regular hexagonal, random and hexagonal. As a result of measuring the light transmittance by changing the array structure, the light transmittance measured at the detector at the same position was almost similar regardless of the array structure. In the detectors D0, D1, D2 and D3, the maximum transmittance is shown in square, hexagonal and square, regular hexagonal and regular hexagonal array structure, and the minimum transmittance is hexagonal, random, hexagonal and square, and square array structure. However, the difference between the maximum transmittance and the minimum transmittance was almost the same within 1%. When the number of collagen fibers was the same, the light transmittance of the rectangular array structure decreased with increasing fiber layer thickness. And as the thickness increased, the light transmittance decreased more when the number of collagen fibers decreased. Conclusion : Even though the collagen array structure changed, the light transmittance is almost similar regardless of the arrangement structure. However, as the array structure was changed, the thickness of the collagen fiber layer changed, and as the thickness increased, the light transmittance decreased. In other words, the transparency of the corneal stroma is more closely related to the thickness of the fibrous layer than the array of collagen fibers.

Atomic Layer $MoS_2$ Field-effect Transistors on Hexagonal Boron Nitride Substrate

  • Yu, Yeong-Jun;Lee, Gwan-Hyeong;Hone, James;Kim, Philip
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.192-192
    • /
    • 2012
  • The next generation electronics need to not only be smaller but also be more flexible. To meet such demands, electronic devices using two dimensional (2D) atomic crystals like graphene, hexagonal boron nitride (h-BN), molybdenum disulfate ($MoS_2$) and organic thin film have been studied intensely. In this talk, I will demonstrate the $MoS_2$ field effect transistor (FET) toward performance enhancement by insulating h-BN substrate.

  • PDF

Normalized characteristics of the photonic bandgaps in two-dimensional photonic crystals with a hexagonal lattice by FDID simulation (FDTD 시뮬레이션을 이용한 육방정계형 2차원 광자결정에서의 광자밴드갭 특성 정규화)

  • Yeo, Jong-Bin;Lee, Hyun-Yong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.38-38
    • /
    • 2009
  • Characteristics of the photonic bandgaps (PBGs) in two-dimensional photonic crystals (2D PCs) with a hexagonal lattice have theoretically studied using a finite difference time domain (FDTD) simulation. In this research, we propose a concept of optical coverage ratio (OCR) as a new structural parameter to determine the PBGs for E-polarized light. The OCR is an optically compensated filling factor. It is possible to normalize the PBGs of 2D PCs by introducing the OCR.

  • PDF

Trend and Issues of van der Waals 2D Semiconductor Devices (반데르발스 2차원 반도체소자의 응용과 이슈)

  • Im, Seongil
    • Vacuum Magazine
    • /
    • v.5 no.2
    • /
    • pp.18-22
    • /
    • 2018
  • wo dimensional (2D) van der Waals (vdW) nanosheet semiconductors have recently attracted much attention from researchers because of their potentials as active device materials toward future nano-electronics and -optoelectronics. This review mainly focuses on the features and applications of state-of-the-art vdW 2D material devices which use transition metal dichalcogenides, graphene, hexagonal boron nitride (h-BN), and black phosphorous: field effect transistors (FETs), complementary metal oxide semiconductor (CMOS) inverters, Schottky diode, and PN diode. In a closing remark, important remaining issues of 2D vdW devices are also introduced as requests for future electronics and photonics applications.

Fabrication of 2D Bravais Nano Pattern and Growth of ZnO Nano Rods with Photonic Crystal Effect (2차원 Bravais Lattice를 가지는 나노 패턴 제조 및 광결정 효과를 가지는 ZnO 나노 기둥 성장)

  • Kim, Tae-Un;Moon, Jong-Ha;Kim, Seon-Hoon;Kim, Doo-Gun;Kim, Jin-Hyeok
    • Korean Journal of Materials Research
    • /
    • v.21 no.12
    • /
    • pp.697-702
    • /
    • 2011
  • Two-dimensional (2D) nano patterns including a two-dimensional Bravais lattice were fabricated by laser interference lithography using a two step exposure process. After the first exposure, the substrate itself was rotated by a certain angle, $90^{\circ}$ for a square or rectangular lattice, $75^{\circ}$ for an oblique lattice, and $60^{\circ}$ for a hexagonal lattice, and the $90^{\circ}$ and laser incident angle changed for rectangular and the $45^{\circ}$ and laser incident angle changed for a centered rectangular; we then carried out a second exposure process to form 2D bravais lattices. The band structure of five different 2D nano patterns was simulated by a beam propagation program. The presence of the band-gap effect was shown in an oblique and hexagonal structure. The oblique latticed ZnO nano-photonic crystal array had a pseudo-bandgap at a frequency of 0.337-0.375, 0.575-0.596 and 0.858-0.870. The hexagonal latticed ZnO nano-crystallite array had a pseudo-bandgap at a frequency of 0.335-0.384 and 0.585-0.645. The ZnO nano structure with an oblique and hexagonal structure was grown through the patterned opening window area by a hydrothermal method. The morphology of 2D nano patterns and ZnO nano structures were investigated by atomic force microscopy and scanning electron microscopy. The diameter of the opening window was approximately 250 nm. The height and width of ZnO nano-photonic crystals were 380 nm and 250 nm, respectively.