DOI QR코드

DOI QR Code

STM Study of Low Dimensional Nanostructures Formed by Adsorption of Dipyrromethane-trimer Molecules on Graphite Surface

흑연 표면에 형성된 dipyrromethene-trimer 분자의 저차원 나노구조의 주사 터널링 현미경 연구

  • Son, S.B. (Department of Chemistry, Chonbuk National University) ;
  • Lee, S.J. (Department of Chemistry, Chonbuk National University) ;
  • Hahn, J.R. (Department of Chemistry, Chonbuk National University) ;
  • Shin, J.Y. (Department of Chemistry, University of British Columbia) ;
  • Dolphin, D. (Department of Chemistry, University of British Columbia)
  • Published : 2008.09.30

Abstract

We have investigated the low-dimensional nanostructures produced by adsorption of triangular Co coplexed dipyrromethane(DPM-trimer, Fig. 1) on graphite surface by using scanning tunneling microscope. DPM-trimer deposition on the graphite surface leads to the formation of long 1-D molecular wires and 2-D hexagonal patterns. We analyzed the heights and structures of 1-D molecular wires and 2-D hexagonal patterns. The 1-D molecular wires were formed 'edge-on' alignments on graphite surface result of continuos $\pi-\pi$ stacking interactions. The other case of 2-D hexagonal patterns were formed 'face-on' alignments on graphite surface.

Dipyrromethene 유도체 분자 중 하나인 삼각형 모양의 Co-DPM 거대분자 (Co-DPM-trimer, Fig. 1)를 이용하여 흑연 표면에서 다양한 저차원 분자 나노구조를 형성할 수 있었으며, 이를 주사 터널링 현미경(scanning tunneling microscope)으로 관찰하였다. Co-DPM-trimer 분자를 $CH_2Cl_2$ 용매에 녹여 흑연 표면에 뿌리면, 용매가 증발되며 그 동안 표면에 분자 나노구조가 형성된다. 본 연구에서는 다양한 두께의 긴 1차원 분자선과 2차원 구조인 육각형 패턴을 관찰하였다. 1차원 분자선과 2차원 육각형 패턴의 높낮이 및 구조를 분석한 결과, 1차원 분자선의 경우 흑연 표면에 'edge-on'정렬로 연속된 $\pi-\pi$ stacking 상호작용에 의해서, 그리고 육각형 패턴 구조는 'face-on'정렬을 통해서 형성된 것으로 보인다.

Keywords

References

  1. J.-M. Lehn, Science 295, 2400 (2002) https://doi.org/10.1126/science.1071063
  2. X. L. Guo, Z. C. Dong, A. S. Trifonov, K. Miki, K. Kimura, and S. Mashiko, Appl. Phys. A 81, 367 (2005) https://doi.org/10.1007/s00339-004-2896-3
  3. S. K. Dey, T. S. M. Abedin, L. N. Dawe, S. S. Tandon, J. L. Collins, L. K. Thompson, A. V. Postnikov, M. S. Alam, and P. Muller, Inorg. Chem. 46, 7767 (2007) https://doi.org/10.1021/ic070336a
  4. M. Ruben, J.-M. Lehn, and P. Muller, Chem. Soc. Rev. 35, 1056 (2006) https://doi.org/10.1039/b517267p
  5. J. Yin, Q. Guo, and R. E. Palmer, J. Phys. Chem. B 107, 209 (2003) https://doi.org/10.1021/jp026490u
  6. P. J. Thomas, N. Berovic, P. Laitenberger, R. E. Palmer, N. Bampos, and L. K. M. Sanders, Chem. Phys. Lett. 294, 229 (1998) https://doi.org/10.1016/S0009-2614(98)00790-8
  7. B. Hulsken, R. van Hameren, P. Thordarson, J. W. Gerritsen, R. J. M. Nolte, A. E. Rowan, M. J. Crossley, J. A. A. W. Elemans, and S. Speller, Jpn. J. Appl. Phys. 45, 1953 (2006) https://doi.org/10.1143/JJAP.45.1953
  8. T. Ikeda, M. Asakawa, M. Goto, K. Miyake, T. Ishida, and T. Shimizu, Langmuir 20, 5454 (2004) https://doi.org/10.1021/la049577a
  9. X. Qiu, C. Wang, Q. Zeng, B. Xu, S. Yin, H. Wang, S. Xu, and C. Bai, J. Am. Chem. Soc. 122, 5550 (2000) https://doi.org/10.1021/ja994271p
  10. S. B. Lei, J. Wang, Y. H. Dong, C. Wang, L. J. Wan, and C. L. Bai, Surf. Interface Anal. 34, 767 (2002) https://doi.org/10.1002/sia.1407
  11. Y. Zhou,B. Wang, M. Zhu, and J. G. Hou, Chem. Phys. Lett. 403, 140(2005) https://doi.org/10.1016/j.cplett.2005.01.006
  12. N. Aratani, A. Osuka, Y. H. Kim, D. H. Jeong, and D. Kim, Angew. Chem. Int. Ed. 39, 1458 (2000) https://doi.org/10.1002/(SICI)1521-3773(20000417)39:8<1458::AID-ANIE1458>3.0.CO;2-E
  13. R. A. Haycock, C. A. Hunter, D. A. James, U. Michelsem, and L. R. Sutton, Org. Lett. 2, 4235 (2000)
  14. T. N. Milic, N. Chi, D. G. Yablon, G. W. Flynn, J. D. Batteas. And C. M. Drain, Angew. Chem. Int. Ed. 41, 2117 (2002) https://doi.org/10.1002/1521-3773(20020617)41:12<2117::AID-ANIE2117>3.0.CO;2-2
  15. T. Malinski, and Z. Taha, Nature 358, 676 (1992) https://doi.org/10.1038/358676a0
  16. Y. Harima, H. Okazaki, Y. Kunugi, K. Yamashita, H. Ishii, and K. Seki, Appl. Phys. Lett. 69, 1059 (1996) https://doi.org/10.1063/1.116930
  17. J. R. Reimers, T. X. Lu, M. J. Crossley, and N. S. Hush, Nanotechnology 7, 424 (1996) https://doi.org/10.1088/0957-4484/7/4/022
  18. C. H. M. Maree, S. J. Roosendaal, T. J. Savenije, R. E. I. Schropp, T. J. Schaafsma, and F. H. P. M. Habraken, J. Appl. Phys. 80, 3381 (1996) https://doi.org/10.1063/1.363203
  19. J. Kido, M, Kimura, and K. Nagai, Science 267, 1332 (1995) https://doi.org/10.1126/science.267.5202.1332
  20. Z. Bao, Z. A. Dodabalapur, and A. J. Lovinger, Appl. Phys. Lett. 69, 4108 (1996) https://doi.org/10.1063/1.117834
  21. J. A. A. W. Elemans, M. C.Lensen, J. W. Gerrisen, H. Van Kempen, S. Speller, R. J. M. Nolte, and A. E. Rowan, Adv. Mater. 15, 2070 (2003) https://doi.org/10.1002/adma.200305602
  22. Unpublished results
  23. 손승배, 이해성, 전일철, 한재량, 한국진공학회지 15, 81 (2006)
  24. S. B. Son, H. Lee, I. C. Jeon, S. K. Park, and J. R. Hahn, J. Nanosci. Nanotech. 6, 2494 (2006)
  25. P. Samori, H. Engelkamp, P. de Witte, A. E. Rowan, R. J. M. Nolte, and J. P. Rabe, Angew. Chem. Int. Ed. 40, 2348 (2001) https://doi.org/10.1002/1521-3773(20010618)40:12<2348::AID-ANIE2348>3.0.CO;2-I