N2-001

Atomic Layer MoS₂ Field-effect Transistors on Hexagonal Boron Nitride Substrate

유영준^{1,3}, 이관형², James Hone², Philip Kim³

¹Creative Research Center for Graphene Electronics, Electronics and Telecommunications Research Institute (ETRI), ²Department of Mechanical Engineering, Columbia University, ³Department of Physics, Columbia University

The next generation electronics need to not only be smaller but also be more flexible. To meet such demands, electronic devices using two dimensional (2D) atomic crystals like graphene, hexagonal boron nitride (h-BN), molybdenum disulfate (MoS₂) and organic thin film have been studied intensely. In this talk, I will demonstrate the MoS₂ field effect transistor (FET) toward performance enhancement by insulating h-BN substrate.

Keywords: graphene, hexagonal boron nitride (h-BN), molybdenum disulfate (MoS₂), field effect transistor (FET)