• Title/Summary/Keyword: 2D wave-tank

Search Result 70, Processing Time 0.019 seconds

An Experimental Study of Wave Impact Loads on an FPSO Bow in 2D Wave-Tank

  • Dong-Min Park;Byoungjae Park;Kangsu Lee
    • Journal of Ocean Engineering and Technology
    • /
    • v.38 no.5
    • /
    • pp.218-231
    • /
    • 2024
  • In harsh environments, an floating production storage and offloading (FPSO) is occasionally damaged by impact loads, such as bow flare slamming and green water. This study conducted an impact load measurement experiment on a model of an FPSO bow in a 2D wave tank. Three types of frequency-focused waves (steep, spilling, and plunging) were generated, and the speed and slope of the waves were measured. Seven wave probes were placed in a row, and the wave elevation was measured to determine the speed and slope of the waves. In addition, the side of the 2D wave tank was photographed with a high-speed camera. The speed and slope of the waves obtained from the wave probe array agreed well with those obtained from the photographs taken using a high-speed camera. In the case of a steep wave, wave runup occurred at the bow before the wave reached the bow of the FPSO, so no impact load was generated, and only hydrostatic pressure was measured. Impact loads were generated in the spilling and plunging waves, and the magnitude of impact loads using the Von Karman's estimation formula and the impact loads measured in model tests showed similar values.

An Experimental Study on Wave Absorber Performance of Combined Punching Plate in a Two-Dimensional Mini Wave Tank

  • Jung, Hyen-Cheol;Koo, Weoncheol
    • Journal of Ocean Engineering and Technology
    • /
    • v.35 no.2
    • /
    • pp.113-120
    • /
    • 2021
  • In order to perform a precise wave tank experiment, it is necessary to maintain the incident wave generated by the wavemaker in a steady state and to effectively remove the reflected waves. In this paper, a combined sloping-wall-type punching plate wave absorber was proposed to attenuate reflected waves effectively in a two-dimensional mini wave tank. Using the four-point reflection separation method, the reflected waves were measured to determine the reflection coefficients. Experiments were conducted under various punching plate porosities, sloping plate angles, and incident wave conditions to evaluate the performance of the combined punching plate wave absorber. The most effective wave absorbing performance was achieved when the porosity was 10% and the inclination angle of the punching plate was 18.6° under the present condition. It was also found that the installation of the sloping plate could improve the wave attenuation performance by generating the shoaling effect of the incident wave.

On Long Wave Induced by a Sub-sea Landslide Using a 2D Numerical Wave Tank

  • Koo, Weon-Cheol;Kim, Moo-Hyun
    • Journal of Ocean Engineering and Technology
    • /
    • v.21 no.5
    • /
    • pp.1-8
    • /
    • 2007
  • A long wave induced by a Gaussian-shape submarine landslide is simulated by a 2D fully nonlinear numerical wave tank (NWT). The NWT is based on the boundary element method and the mixed Eulerian/Lagrangian approach. Using the NWT, physical characteristics of land-slide tsunami, including wave generation, propagation, particle kinematics, hydrodynamic pressure, run-up and depression, are simulated for the early stage of long wave generation and propagation. Various sliding mass heights are applied to the developed model for a systematic sensitivity analysis. In particular, the fully nonlinear NWT results are compared with linear results (exact body-boundary conditions with linear free-surface conditions) to identify the nonlinear effects in the respective cases.

Hydrodynamic analysis of a floating body with an open chamber using a 2D fully nonlinear numerical wave tank

  • Uzair, Ahmed Syed;Koo, Weon-Cheol
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.4 no.3
    • /
    • pp.281-290
    • /
    • 2012
  • Hydrodynamic analysis of a surface-piercing body with an open chamber was performed with incident regular waves and forced-heaving body motions. The floating body was simulated in the time domain using a 2D fully nonlinear numerical wave tank (NWT) technique based on potential theory. This paper focuses on the hydrodynamic behavior of the free surfaces inside the chamber for various input conditions, including a two-input system: both incident wave profiles and forced body velocities were implemented in order to calculate the maximum surface elevations for the respective inputs and evaluate their interactions. An appropriate equivalent linear or quadratic viscous damping coefficient, which was selected from experimental data, was employed on the free surface boundary inside the chamber to account for the viscous energy loss on the system. Then a comprehensive parametric study was performed to investigate the nonlinear behavior of the wave-body interaction.

Application of Three-Dimensional Numerical Irregular wave Tank(3D-NIT) Model (3차원 불규칙 수치파동수조(3D-NIT) 모델의 적용성에 관한 연구)

  • Lee, Kwang-Ho;Baek, Dong-Jin;Kim, Do-Sam
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.18 no.5
    • /
    • pp.388-397
    • /
    • 2012
  • In this study, 3D-NIT(3-Dimensional Numerical Irregular wave Tank) model in which regular wave as well as stable irregular wave can be generated in 3-dimensional numerical irregular wave tank was proposed. To verify validity, the following steps need to be conducted: 1) comparative analysis between calculated waveforms and targeted waveforms at the wave generating point, 2) comparative analysis with the existing experimental values of overtopping volume estimated, targeting shore protection structures installed on a slope bed, 3) comparison with the existing numerical and hydraulic experimental results through application in the analysis on the wave deformation by structures and wave force acting on the vertical cylindrical structures. Based on the results, characteristics of the breaking wave forces according to incident waves and interval distance of structures were identified through application of 3D-NIT model in the analysis on the breaking wave forces acting on the cylindrical structures installed on a slope bed, and reflection and overtopping was reviewed through application in the special breakwaters on the domestic fields. The numerical results obtained the 3D-NIT model are in good agreement with experimental results, and its applicaion to the complex-shpaed coastal structures is verified.

Numerical Simulation of a Near shore Tsunami Using a Digital Wave Tank Simulation Technique (디지털 수치수조 기법에 의한 연안 Tsunami의 수치 시뮬레이션)

  • 박종천;전호환
    • Journal of Ocean Engineering and Technology
    • /
    • v.17 no.6
    • /
    • pp.7-15
    • /
    • 2003
  • A Digital Wave Tank simulation technique, based on a finite-difference method and a modified marker-and-cell (MAC) algorithm, is applied in order to investigate the characteristics of nonlinear Tsunami propagations and their interactions with a 2D sloping beach, Ohkushiri Island, and to predict maximum wove run-up around the island. The Navier-Stokes (NS) and continuity equation are governed in the computational domain, and the boundary values are updated at each time step, by a finite-difference time-marching scheme in the frame of the rectangular coordinate system. The fully nonlinear, kinematic, free-surface condition is satisfied by the modified marker-density function technique. The near shore Tsunami is assumed to be a solitary wave, and is generated from the numerical wave-maker in the developed Digital Wave Tank. The simulation results are compared with the experiments and other numerical methods, based on the shallow-water wave theory.

Numerical Simulation of Nearshore Tsunami Using a Digital Wave Tank Simulation Technique (디지털 수치수조 기법에 의한 연안 Tsunami의 수치 시뮬레이션)

  • Park, Jong-Chun;Chun, Ho-Hwan
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.231-239
    • /
    • 2003
  • A Digital Wave Tank simulation technique based on a finite-difference method and a modified marker-and-cell (MAC) algorithm is applied to investigate the characteristics of nonlinear Tsunami propagations and their interactions with a 2D sloping beach and Ohkushiri island, and to predict maximum wave run-up around the island. The Navier-Stokes (NS) and continuity equation are governed in the computational domain and the boundary values updated at each time step by a finite-difference time-marching scheme in the frame of rectangular coordinate system. The fully nonlinear kinematic free-surface condition is satisfied by the modified marker-density function technique. The Nearshore Tsunami is assumed to be a solitary wave and generated from the numerical wavemaker in the developed Digital Wave Tank. The simulation results are compared with the experiments and other numerical methods based on the shallow-water wave theory.

  • PDF

Evaluation of Structural Response of Cylindrical Structures Based on 2D Wave-Tank Test Due to Wave Impact (파랑충격력에 의한 원형실린더구조물의 구조응답평가)

  • Lee, Kangsu;Ha, Yoon-Jin;Nam, Bo Woo;Kim, Kyong-Hwan;Hong, Sa Young
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.33 no.5
    • /
    • pp.287-296
    • /
    • 2020
  • The wave-impact load on offshore structures can be divided into green-water and wave-slamming impact loads. These wave impact loads are known to have strong nonlinear characteristics. Although the wave impact loads are dealt with in the current classification rules in the shipping industry, their strong nonlinear characteristics are not considered in detail. Therefore, to investigate these characteristics, wave-impact loads induced by a breaking wave on a circular cylinder were analyzed. A model test was carried out to measure the wave-impact loads due to breaking waves in a two-dimensional (2D) wave tank. To generate a breaking wave, the focusing wave method was applied. A series of 2D tank tests under a horizontal wave impact was carried out to investigate the structural responses of the cylindrical structure, which were obtained from the measured model test data. According to the results, we proposed a structural damage-estimation procedure of an offshore tubular member due to a wave impact load. Furthermore, a recommended wave-impact load is suggested that considers the minimum required thickness of each member. From the experimental results, we found that the required minimum thickness is dependent on the impact pressure located in a three-dimensional space on the surface of a tubular member.

Application of 3-D Numerical Wave Tank for Dynamic Analysis of Nonlinear Interaction between Tsunami and Vegetation (쓰나미-식생 비선형 상호작용의 동적해석을 위한 3차원 수치파동수조의 적용)

  • Lee, Woo-Dong;Hur, Dong-Soo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.36 no.5
    • /
    • pp.831-838
    • /
    • 2016
  • The disaster preventing system using vegetation has been growing in the field of coastal engineering in recent years. To analyze wave and flow fields under nonlinear interactions between tsunami and vegetation, the purpose of this study is to evaluate newly-developed 3-D numerical wave tank including energy dissipation by tsunami-vegetation interaction based on existing N-S solver with porous body model. Comparing numerical results using mean drag coefficient and dynamic drag coefficient due to Reynolds number to existing experimental results it is revealed that computed results considering the dynamic drag coefficient are in good agreement with the laboratory test results for time-domain waveform. In addition, the calculated transmission coefficients of solitary waves in various vegetation densities and incident wave heights are also in good agreement with the experimental values. This confirms the validity and effectiveness of the developed 3-D numerical wave tank with the fluid resistance by vegetation.

2D Computational Analysis of Overtopping Wave Energy Convertor

  • Liu, Zhen;Hyun, Beom-Soo;Jin, Ji-Yuan
    • Journal of Ocean Engineering and Technology
    • /
    • v.23 no.6
    • /
    • pp.1-6
    • /
    • 2009
  • An Overtopping Wave Energy Convertor (OWEC) is an offshore wave energy convertor used for collecting overtopping waves and converting the water pressure head into electric power through hydro turbines installed in a vertical duct affixed to the sea bed. A numerical wave tank based on the commercial computational fluid dynamics code Fluent is established for the corresponding analysis. The Reynolds Averaged Navier-Stokes equation and two-phase VOF model are utilized to generate the 2D numerical linear propagating waves, which are validated by the overtopping experiment results. Calculations are made for several incident wave conditions and shape parameters for the overtopping device. Both the incident wave periods and heights have evident effects on the overtopping performance of the OWEC device. The computational analysis demonstrates that the present overtopping device is more compatible with longer incident wave periods.