DOI QR코드

DOI QR Code

Application of 3-D Numerical Wave Tank for Dynamic Analysis of Nonlinear Interaction between Tsunami and Vegetation

쓰나미-식생 비선형 상호작용의 동적해석을 위한 3차원 수치파동수조의 적용

  • 이우동 (국립경상대학교 해양산업연구소) ;
  • 허동수 (국립경상대학교 해양토목공학과)
  • Received : 2016.05.18
  • Accepted : 2016.08.08
  • Published : 2016.10.01

Abstract

The disaster preventing system using vegetation has been growing in the field of coastal engineering in recent years. To analyze wave and flow fields under nonlinear interactions between tsunami and vegetation, the purpose of this study is to evaluate newly-developed 3-D numerical wave tank including energy dissipation by tsunami-vegetation interaction based on existing N-S solver with porous body model. Comparing numerical results using mean drag coefficient and dynamic drag coefficient due to Reynolds number to existing experimental results it is revealed that computed results considering the dynamic drag coefficient are in good agreement with the laboratory test results for time-domain waveform. In addition, the calculated transmission coefficients of solitary waves in various vegetation densities and incident wave heights are also in good agreement with the experimental values. This confirms the validity and effectiveness of the developed 3-D numerical wave tank with the fluid resistance by vegetation.

최근 해안공학분야에서 식생을 활용하는 연안방재시스템에 관한 관심이 증가하고 있다. 이에 본 연구에서는 쓰나미-식생 비선형 상호작용에 의한 파동장과 유동장을 해석하기 위하여 식생항력에 따른 에너지소산을 직접 해석할 수 있는 3차원 수치파동수조를 기존의 3-D N-S solver (LES-WASS-3D ver. 2.0, HYMO-WASS-3D)를 토대로 개발하였다. 그리고 기존의 실험결과와 비교 및 검토를 통한 수치파동수조의 적용성을 평가하였다. 그 결과 레이놀즈수에 따라 능동적으로 추정되는 항력계수를 고려한 경우가 평균 항력계수를 적용한 경우보다 실험에서 얻어진 각 지점의 시간파형을 잘 재현하였다. 또한 식생밀도 및 입사파고에 따라 계산된 고립파의 전달률이 실험의 측정값과 높은 일치도를 나타내었다. 이로써 본 연구에서 식생에 의한 항력으로서 동적항력계수를 적용한 3차원 수치파동수조의 타당성 및 유효성을 확인하였다.

Keywords

References

  1. Anderson, M. E., Smith, J. M. and McKay, S. K. (2011). "Wave dissipation by vegetation." U.S. Army Engineer Research and Development Center. ERDC/CHL CHETN-I-82, p. 22.
  2. Asano, T., Deguchi, H. and Kobayashi, N. (1992). "Interactions between water waves and vegetation." Proc. 23rd Int. Conf. on Coastal Eng., ASCE, pp. 2710-2723.
  3. Augustin, L. N., Irish, J. L. and Lynett. P. (2009). "Laboratory and numerical studies of wave damping by emergent and near-emergent wetland vegetation." Coastal Eng., Vol. 56, pp. 332-340. https://doi.org/10.1016/j.coastaleng.2008.09.004
  4. Blackmar, P., Cox, D. and Wu, W. (2014). "Laboratory observations and numerical simulations of wave height attenuation in heterogeneous vegetation." J. Waterway, Port, Coastal, Ocean Eng., Vol. 140, pp. 56-65. https://doi.org/10.1061/(ASCE)WW.1943-5460.0000215
  5. Brackbill, J. U., Kothe, D. B. and Zemach, C. (1992). "A continuum model for modeling surface tension." J. Comp. Phys., Vol. 100, pp. 335-354. https://doi.org/10.1016/0021-9991(92)90240-Y
  6. Brorsen, M. and Larsen, J. (1987). "Source generation of nonlinear gravity waves with the boundary integral equation method." Coastal Eng., Vol. 11, pp. 93-113. https://doi.org/10.1016/0378-3839(87)90001-9
  7. Cheng, N. and Nguyen, H. (2011). "Hydraulic radius for evaluating resistance induced by simulated emergent vegetation in open-channel flows." J. Hydraul. Eng., Vol. 137, pp. 995-1004. https://doi.org/10.1061/(ASCE)HY.1943-7900.0000377
  8. Dubi, A. and Torum, A. (1994). "Wave damping by kelp vegetation." Proc. 24th Int. Conf. on Coastal Eng., ASCE, pp. 142-156.
  9. Fenton, J. (1972). "A ninth-order solution for the solitary wave: Part2." J. Fluid Mech., Vol. 53, pp. 257-271. https://doi.org/10.1017/S002211207200014X
  10. Grimshaw, R. (1971). "The solitary wave in water of variable depth: Part 2." J. Fluid Mech., Vol. 46, pp. 611-622. https://doi.org/10.1017/S0022112071000739
  11. Huang, Z., Yao, Y. Sim, S. Y. and Yao, Y. (2011). "Interaction of solitary waves with emergent, rigid vegetation." Ocean Eng., Vol. 38, pp. 1080-1088. https://doi.org/10.1016/j.oceaneng.2011.03.003
  12. Hur, D. S., Lee, W. D. and Cho, W. C. (2012). "Three-dimensional flow characteristics around permeable submerged breakwaters with open inlet." Ocean Eng., Vol. 44, pp. 100-116. https://doi.org/10.1016/j.oceaneng.2012.01.029
  13. Iimura, K. and Tanaka, N. (2012). "Numerical simulation estimating the effects of tree density distribution in coastal forest on tsunami mitigation," Ocean Eng., Vol. 54, pp. 223-232. https://doi.org/10.1016/j.oceaneng.2012.07.025
  14. Kim, W. G. (2008). "An experimental study for wave energy attenuation by vegetation density." Master's thesis, Gyeongsang Nat'l Univ., 40p (in Korean).
  15. Kobayashi, N., Raichle, A. W. and Asano, T. (1993). "Wave attenuation by vegetation." J. Waterway, Port, Coastal, Ocean Eng., Vol. 119, pp. 30-48. https://doi.org/10.1061/(ASCE)0733-950X(1993)119:1(30)
  16. Lara, J. L., Maza, M., Ondiviela, B., Trinogga, J., Losada, I. J., Bouma, T. J. and Gordejuela, N. (2016). "Large-scale 3-D experiments of wave and current interaction with real vegetation. Part 1: Guidelines for physical modeling." Coastal Eng., Vol. 107, pp. 70-83. https://doi.org/10.1016/j.coastaleng.2015.09.012
  17. Lee, S. D. (2007). "Numerical analysis for wave propagation and sediment transport with coastal vegetation." J. Ocean Eng. and tech., Vol. 21, pp. 18-24 (in Korean).
  18. Lee, S. D. and Kim, M. J. (2014). "Effects of disaster prevention of a coastal forest considering wave attenuation ability." J. Korean Soc. Hazard Mitig., Vol. 14, pp. 381-388 (in Korean). https://doi.org/10.9798/KOSHAM.2014.14.5.381
  19. Lee, S. D., Kim, S. D. and Kim, I. H. (2012). "Reduction effect for deposition in navigation channel with vegetation model." J. Navi. and Port Res., Vol. 36, pp. 659-664 (in Korean). https://doi.org/10.5394/KINPR.2012.36.8.659
  20. Lee, S. D., Park, J. C. and Hong, C. B. (2009). "Hydraulic experiment on the effects of beach erosion prevention with flexible coastal vegetation." J. Ocean Eng. and tech., Vol. 23, pp. 31-37 (in Korean).
  21. Lee, W. D. and Hur, D. S. (2014a). "Development of 3-d hydrodynamical model for understanding numerical analysis of density current due to salinity and temperature and its verification." J. Korean Society of Civil Engineers, KSCE, Vol. 34, No. 3, pp. 859-871 (in Korean). https://doi.org/10.12652/Ksce.2014.34.3.0859
  22. Lee, W. D. and Hur, D. S. (2014b). "Development of a 3-d coupled hydro-morphodynamic model between numerical wave tank and morphodynamic model under wave-current interaction." J. Korean Society of Civil Eng., KSCE, Vol. 34, pp. 1463-1476 (in Korean). https://doi.org/10.12652/Ksce.2014.34.5.1463
  23. Ma, G., Kirby, J. T., Su, S. F., Figlus, J. and Shi, F. (2013). "Numerical study of turbulence and wave damping induced by vegetation canopies." Coastal Eng., Vol. 80, pp. 68-78. https://doi.org/10.1016/j.coastaleng.2013.05.007
  24. Maza, M., Lara, J. L. and Losada, I. J. (2015a). "Tsunami wave interaction with mangrove forests: A 3-D numerical approach." Coastal Eng., Vol. 98, pp. 33-54. https://doi.org/10.1016/j.coastaleng.2015.01.002
  25. Maza, M., Lara, J. L., Losada, I. J., Ondiviela, B., Trinogga, J., Bouma, T. J. (2015b). "Large-scale 3-D experiments of wave and current interaction with real vegetation. Part 2: Experimental analysis." Coastal Eng., Vol. 106, pp. 73-86. https://doi.org/10.1016/j.coastaleng.2015.09.010
  26. Mendez, F. M. and Losada, I. J. (2004). "An empirical model to estimate the propagation of random breaking and nonbreaking waves over vegetation fields." Coastal Eng., Vol. 51, pp. 103-118. https://doi.org/10.1016/j.coastaleng.2003.11.003
  27. Ohyama, T. and Nadaoka, K. (1991). "Development of a numerical wave tank for analysis of non-linear and irregular wave field." Fluid Dynamics Res., Vol. 8, pp. 231-251. https://doi.org/10.1016/0169-5983(91)90045-K
  28. Sakakiyama, T. and Kajima, R. (1992). "Numerical simulation of nonlinear wave interacting with permeable breakwater." Proc. 23rd Int. Conf. Coastal Eng., ICCE, ASCE, pp. 1517-1530.
  29. Sugahara, K. and Nagai, T. (1994), "Hydraulic Model Experiment on the Artificial Seaweed against Scouring and Beach Erosion." Technical Note of the Port and Airport Research Institute (PARI), No. 771, p. 39 (in Japanese).
  30. Suzuki, T. (2011). "Wave dissipation over vegetation fields." Ph.D. thesis, Univ. of Technology Delft, p. 175.
  31. Tanino, Y. and Nepf, H. M. (2008). "Laboratory investigation of mean drag in a random array of rigid, emergent cylinders." J. Hydraulic Eng., Vol. 134, pp. 34-41. https://doi.org/10.1061/(ASCE)0733-9429(2008)134:1(34)
  32. Wu, W. C. and Cox, D. T. (2015). "Effects of wave steepness and relative water depth on wave attenuation by emergent vegetation." Estuarine Coastal Shelf Sci., Vol. 164, pp. 443-450. https://doi.org/10.1016/j.ecss.2015.08.009
  33. Yang, J. Y. (2008). "Wave propagation with vegetated coastal area." Master's thesis, Univ. of Ulsan, p. 45 (in Korean).