DOI QR코드

DOI QR Code

A Novel Method to Assess the Aerobic Gasoline Degradation by Indigenous Soil Microbial Community using Microbial Diversity Information

토양 미생물 다양성 지표를 이용한 토착 미생물 군집의 호기성 가솔린 오염분해능력 평가 기법 개발 연구

  • 황서윤 (연세대학교 토목환경공학과) ;
  • 이나리 (연세대학교 토목환경공학과) ;
  • 권혜지 (연세대학교 토목환경공학과) ;
  • 박준홍 (연세대학교 토목환경공학과)
  • Received : 2016.04.25
  • Accepted : 2016.07.19
  • Published : 2016.10.01

Abstract

Since oil leakage is one of the most common nonpoint pollution sources that contaminate soil in Korea, the capacity of soil microbial community for degrading petroleum hydrocarbons should be considered to assess the functional value of soil resource. However, conventional methods (e.g., microcosm experiments) to assess the remediation capacity of soil microbial community are costly and time-consuming to cover large area. The present study suggests a new approach to assess the toluene remediation capacity of soil microbial community using a microbial diversity index, which is a simpler detection method than measuring degradation rate. The results showed that Shannon index of microbial community were correlated with specific degradation rate ($V_{max}$), a degradation factor. Subsequently, a correlation equation was generated and applied to Michaelis-Menten kinetics. These results will be useful to conveniently assess the remediation capacity of soil microbial community and can be widely applied to diverse engineering fields including environment-friendly construction engineering fields.

유류오염은 우리나라의 대표적인 토양 비점오염원으로 알려져 있으며, 이를 정화하는 토양의 능력은 토양 자원의 기능적 가치 평가에서 매우 유의하다. 특히 절/성토 설계 등의 친환경 건설기술 측면에서 토양의 유류오염정화능력을 평가하는 것은 중요하다. 그러나 마이크로코즘 실험을 포함한 기존의 토양 유류 오염정화능력 평가기법은 경제적, 시간적인 제약이 많아 광범위한 지역에 적용하기 어렵다. 이에 본 연구에서는 유류 오염물질 중 가솔린의 대표적 오염물질인 톨루엔을 선정하여 쉽고 간편하게 측정할 수 있는 토양의 미생물 다양성 지표를 이용, 토양의 유류오염 정화능력을 평가하는 기법을 제시하였다. 연구를 통해 미생물 군집의 다양성 지표 중 Shannon index가 토양의 정화능력 인자인 Specific Degradation Rate ($V_{max}$)와 상관성 관계가 있음을 보였고, 두 인자 간의 상관식을 도출할 수 있었다. 또한 본 상관식을 Michaelis-Menten kinetics에 적용하여 미생물 다양성 인자만으로 토양의 톨루엔 정화능력을 평가할 수 있는 기법을 제시하였다. 본 기법을 통해 간단히 토양의 톨루엔 정화능력을 평가할 수 있으며, 친환경 건설기술분야와 같은 다양한 공학적 분야에 광범위하게 활용될 수 있을 것으로 기대된다.

Keywords

References

  1. Ahiablame, L. M., Engel, B. A. and Chaubey, I. (2012). "Effectiveness of low impact development practices: Literature Review and Suggestions for Future Research." Water Air Soil Pollut., Springer, Vol. 223, No. 7, pp. 4253-4273. https://doi.org/10.1007/s11270-012-1189-2
  2. Alvarez, P. J. J. and Vogel, T. M. (1991). "Substrate interactions of benzene, Toluene, and Para-Xylene during Microbial-Degradation by Pure Cultures and Mixed Culture Aquifer Slurries." Appl. Environ. Microbiol., Amer Soc Microbiology, Vol. 57, No. 10, pp. 2981-2985.
  3. Chen, Y. M., Abriola, L. M., Alvarez, P. J. J., Anid, P. J. and Vogel, T. M. (1992). "Modeling transport and biodegradation of benzene and toluene in sandy aquifer material - Comparisons with Experimental Measurements." Water Resour. Res., Amer Geophysical Union, Vol. 28, No. 7, pp. 1833-1847. https://doi.org/10.1029/92WR00667
  4. Chung, K. (2002). "Case study of health risk assessment and preliminary remediation goals calculation for the petroleum contaminated site." J. Environ. Toxicol., KSET, Vol. 17, No. 4, pp. 347-355 (in Korean).
  5. Furukawa, K., Hirose, J., Suyama, A., Zaiki, T. and Hayashida, S. (1993). "Gene components responsible for discrete substrate specificity in the metabolism of biphenyl (bph operon) and toluene (tod operon)." J. Bacteriol., Amer Soc Microbiology, Vol. 175, No. 16, pp. 5224-5232. https://doi.org/10.1128/jb.175.16.5224-5232.1993
  6. Goldsmith, C. D. and Balderson, R. K. (1988). "Biodegradation and growth-kinetics of enrichment isolates on benzene, Toluene and Xylene." Water Sci. Technol., IWA Publishing, Vol. 20, pp. 505-507. https://doi.org/10.2166/wst.1988.0336
  7. Hayashi, H., Sakamoto, M., Kitahara, M. and Benno, Y. (2003). "Molecular analysis of fecal microbiota in elderly individuals using 16S rDNA Library and T-RFLP." Microbiol. Immunol., Wiley-Blackwell, Vol. 47, No. 8, pp. 557-570. https://doi.org/10.1111/j.1348-0421.2003.tb03418.x
  8. Johnson, D. R., Helbling, D. E., Lee, T. K., Park, J., Fenner, K., Kohler, H. P. E. and Ackermann, M. (2015). "Association of biodiversity with the rates of micropollutant biotransformations among full-scale wastewater treatment plant communities." Appl. Environ. Microbiol., Amer Soc Microbiology, Vol. 81, No. 2, pp. 666-675. https://doi.org/10.1128/AEM.03286-14
  9. Ki, D. (2008). Development of methods for classifying and mapping soil ecological quality using a decision tree algorithm, M.S. Dissertation, Yonsei University (in Korean).
  10. Kim, D., Chae, J., Zylstra, G., Kim, Y., Kim, S., Nam, M., Kim, Y. and Kim, E. (2004). "Identification of a novel dioxygenase involved in metabolism of o-Xylene, Toluene, and Ethylbenzene by Rhodococcus sp. Strain DK17." Appl. Environ. Microbiol., Amer Soc Microbiology, Vol. 70, No. 12, pp. 7086-7092. https://doi.org/10.1128/AEM.70.12.7086-7092.2004
  11. Kim, J., Kim, S., Lee, Y., Choi, H. and Park, J. (2014). "Proposed methodological framework of assessing LID (Low Impact Development) impact on soil-groundwater environmental quality." Journal of the Korean Geo-Environmental Society, KGES, Vol. 15, No. 7, pp. 39-50 (in Korean).
  12. Kim, K., Yoo, K., Ki, D., Son, I. S., Oh, K. J. and Park, J. (2011). "Decision-Tree-based data mining and rule induction for predicting and mapping soil bacterial diversity." Environment. Monit. Assess., Springer, Vol. 178, pp. 595-610. https://doi.org/10.1007/s10661-010-1763-2
  13. Kukor, J. J. and Olsen, R. H. (1996). "Catechol 2,3-dioxygenases functional in oxygen-limited (hypoxic) environments." Appl. Environ. Microbiol., Amer Soc Microbiology, Vol. 62, No. 5, pp. 1728-1740.
  14. Oh, Y. S., Shareefdeen, Z., Baltzis, B. C. and Bartha, R. (1994). "Interactions between Benzene, Toluene and P-Xylene (Btx) during Their Biodegradation." Biotechnol. Bioeng., Wiley-Blackwell, Vol. 44, No. 4, pp. 533-538. https://doi.org/10.1002/bit.260440417
  15. Park, E., Chang, H., Kim, K., Nam, Y., Roh, S. and Bae, J. (2009). "Application of quantitative real-time PCR for enumeration of total bacterial, Archaeal, and Yeast Populations in Kimchi." J. Microbiol., Microbiological Society Korea, Vol. 47, No. 6, pp. 682-685. https://doi.org/10.1007/s12275-009-0297-1
  16. Ranjard, L., Poly, F. and Nazaret, S. (2000). "Monitoring complex bacterial communities using culture-independent molecular techniques: Application to Soil Environment." Res. Microbiol., Elsevier Science BV, Vol. 151, pp. 167-177. https://doi.org/10.1016/S0923-2508(00)00136-4
  17. Shim, L. and Lee, J. (2008). "Evaluation of lactic acid bacterial community in kimchi using terminal-restriction fragment length polymorphism analysis." Kor. J. Microbiol. Biotechnol., KMB, Vol. 36, No. 4, pp. 247-259 (in Korean).
  18. Shin, J., Roh, S., Jung, S., Oh, G., Kim, M. and Yook, W. (2014). "The study on the BTEX concentration of soil in gas station." J. Soil Groundw. Environ., KoSSGE, Vol. 19, No. 6, pp. 18-23 (in Korean). https://doi.org/10.7857/JSGE.2014.19.6.018
  19. Tabak, H. H., Desai, S. and Govind, R. (1991). On-Site Bioreclamation: Processes for Xenobiotic and Hydrocarbon Treatment, Butterworth-Heinemann: Stoneham, Massachusetts, M.A.
  20. Yu, H., Kim, B. J. and Rittmann, B. E. (2001). "The roles of intermediates in biodegradation of benzene, toluene, and p-xylene by Pseudomonas putida F1." Biodegradation, Springer, Vol. 12, No. 6, pp. 455-463. https://doi.org/10.1023/A:1015008627732
  21. Yun, J. K., Lee, M. H., Lee, S. Y., Lee, J. Y. and Lee, K. K. (2003). "A case study of monitored natural attenuation at the petroleum hydrocarbon contaminated site: I. Site Characterization." Journal of KoSSGE, KoSSGE, Vol. 8, No. 4, pp. 27-35 (in Korean).
  22. Zhou, H. W., Guo, C. L., Wong, Y. S. and Tam, N. F. Y. (2006). "Genetic diversity of dioxygenase genes in polycyclic aromatic hydrocarbon-degrading bacteria isolated from mangrove sediments." FEMS Microbiol. Lett., OXDFORD UNIV PRESS, Vol. 262, No. 2, pp. 148-157. https://doi.org/10.1111/j.1574-6968.2006.00379.x