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ABSTRACT: A long wave induced by a Gaussian-shape submarine landslide is simulated by a 2D fully nonlinear numerical wave tank
(NWI). The NWT is based on the boundary element method and the mixed Eulerian/Lagrangian approach. Using the NWI, physical
characteristics of land-slide tsunami, including wave generation, propagation, particle kinematics, hydrodynamic pressure, run-up and depression,
are simulated forthe early stage of long wave generation and propagation. Various sliding mass heights are applied to the developed model for a
systematic sensitivity analysis. In particular, the fully nonlinesr NWT results are compared with linear results (exact body-boundary
conditionswith linear free-surface conditions) to identify the nonlinear effects in the respective cases.

1. Introduction

A destructive Tsunami occurred at Papua New Guinea
(PNG) in July 1998 due to submarine landslide, which
produced unusually large run-up of 10m height. Landslide
tsunami tends to be local, although possibly extreme, in
its effect since the length-scale of a landslide is typically
much smaller than that of an earthquake. The huge PNG
waves swept three fishing villages of 3m land elevation.
The case of PNG’s landslide-generated tsunami is still of
great scientific interest in that sub-sea landslide can
generate such an unusually large run-up. It has been
found that the earthquake occurred along the steep
dipping reverse faults and the vicinity area of the event
had a steep linear slope from coast. The PNG tsunami
was thought to be generated by combining vertical
displacement of ocean floor with the subsequent landslides
on the steep slope.

The long wave induced by a submarine land-slide has two
characteristics;
dispersion. The nonlinearity becomes even more important as

important nonlinearity and  frequency
the generated wave starts to deform and be amplified in
shallow region. The frequency dispersion of the long wave
mainly occurs when a sliding mass disturbs adjacent fluid
causing free-surface depression.

The subsequent frequency dispersion can play an important
role in determining both the offshore wave field and the
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shoreline flooding (Lynett and Liu, 2002). Depending on the
shape and velocity of the sliding mass, the deformation of
free-surface can change significantly.

The length of the generated wave is dependent on the size
of effective landslide area in the fluid system. Larger effective
area generates longer waves. Therefore, waves induced by an
earthquake are usually longer than those by a landslide
(Lynett and Liu, 2002).

Halmark (1973) first investigated the waves generated by a
deformation of the bounding solid boundary in the fluid both
theoretically and experimentally. He used a two-dimensional
(2D) fluid domain with infinite lateral boundary and uniform
depth. Recently, several researchers have studied the long
wave generation induced by submarine landslide. Grilli and
Watts (1999) developed a 2D boundary element model of an
underwater landslide with 2*-order Taylor series expansion to
simulate the early stage of free-surface deformation in time
domain. Their works were extended to 3D numerical model
(Grilli et al., 2002), 3D experiment (Watts and Grilli, 2003),
and case studies (Watts et al., 2005). Lynett and Liu (2002)
simulated submarine landslide-generated waves and run-up
using a depth-integrated Boussinesq model and compared the
results with a boundary integral equation method. Their
results show that the Boussinesq model is less accurate in
deeper water so that the model may not be applied to the
case of wave propagation to the offshore.

Recently, the present authors developed a 2D fully nonlinear
NWT based on boundary element method, mixed Eulerian
and Lagrangian (MEL) approach and Runge-Kutta 4™ order
(RK4) time integration scheme, which is the most stable
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nonlinear time marching method (Koo and Kim, 2004). Since
the landslide-generated long waves possess strong and
complicated nonlinearity, it is of great interest to compare the
results of linear and fully-nonlinear free-surface conditions
using the developed NWT to assess such nonlinear effects. It
is also interesting to study the resulting wave propagation,
flow kinematics, and induced pressure on seabed, and how
they are influenced by the change of land-slide volume.

In this paper, using the developed NWT, various physical
characteristics of the long waves induced by a Gaussian-shape
submarine landslide with different heights are investigated,
which includes a long wave generation, propagation, run-up
and depression. In particular, water particle velocities above
the submarine mass and hydrodynamic pressure on the sea
slope are also studied. The fully nonlinear results are
systematically compared with linear results to identify
nonlinear effects in respective cases.

2. Mathematical Formulation

2.1 Boundary value problem and numerical schemes

The computational domain is assumed to be filled with
homogenous, invicid, incompressible and irrotational fluid.
Therefore, a fluid velocity in the domain can be described
with the velocity potential. A space fixed rectangular
coordinate system is used, where x is positive rightward from
the left-end and z is positive upward from the calm water
level. The sketch of the computational domain is illustrated in
Fig. 1.

Laplace (continuity)
governing equation in the entire fluid domain,

equation can be applied as the

vip=0 (1)

with the following boundary conditions:
1. Fully nonlinear dynamic and kinematic free surface

conditions
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where’l,g andPare free surface elevation, gravitational
acceleration, and water density, respectively. Parepresents air

pressure on the free-surface assumed to be zero.
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Fig. 1 Sketch of sub-sea landslide, 6=6°, b=lm, Yoo =0.25m

and Ah varies

2. Rigid boundaries on the sea-slope, bottom and vertical
end-wall
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where Il;,, is a prescribed sliding body velocity and | is a unit
normal vector on the body surface. Eq. (4) shows the fluid
velocity adjacent to the moving body equals the body velocity
in the normal direction.

Using the Green function (G) and the described boundary
conditions above, the governing equation (Eq. (1)) over the
domain can be transformed to the boundary integral equation

given as

36
.= !,f GG 93)* )

where, @ is a solid angle (&= 0.5 or 1 when singularities are
on the boundary or inside the fluid, respectively).

In order to solve Eq. (5), discretizing all boundary surfaces
and placing a node on each segment/panel, which is called
constant panel method (CPM) are -used. So, the continuous
integral equation could be modified as in the discrete form

LI} 09, oG,
0’¢f=z Z{G,-,-a—nj—%a—n’ i

=l j=1

©)



Long Wave Induced by a Sub-sea Landslide Using a 2D Numerical Wave Tank 3

where Gj is the matrix form of Green function corresponding
to all boundary nodes, m is the total number of nodes on the

entire boundaries and A5: is the length of each segment.
The Green function (Gj) and its derivative (BGy/ a”) are
directly obtained from the instantaneous geometry of the
boundaries in the fully nonlinear time domain. For 2D
boundary problem, the simple source Gj is given by
Gy (x;,2,,x;,2,)==(1/2m)In R, %)

i

where R, is the distance between source (*»%) and field
points (%i°%;).

To solve the descretized boundary equation (Eq. (6)), the
unknown boundary values should be separated from the
known boundary values. The unknown values, in this case,
are ?s on moving body, rigid sea-slope, sea bottom, and
right-end wall, and 0¢/0n on free surface, while the known

values are ¢ on free surface and (9¢/97)s on all other
boundaries including prescribed sliding body boundary.
Switching the known and unknown terms column by column,
if necessary, the entire equation can be simplified as

¢ 9
ofs
an ¢ ®

where the left bracket is unknown value of [m x 1] matrix
corresponding to each node and the right bracket is boundary

conditions on each boundary. G and H are the modified Gy
and 90;/9n matrixes multiplied by element lengths (45;). The
H matrix includes @® term and ' is inverse form of H.

The velocity potential (#) and its normal derivative on each
segment of the boundaries are obtained from solving Eq. (8).
To obtain the time history of the velocity potential and the
elevation (77) on the free surface, RK4 time-integration scheme
as a time marching and the MEL method are used. These
schemes are applied to Eq. (2) associated with Eq. (8).

Longuet Higgins and Cokelet (1976) first introduced MEL
technique for the time simulation of nonlinear 2D waves. The
MEL scheme has two-step procedure at each time step: (i)
solving the Laplace equation in the Eulerian frame, and (ii)
updating the moving boundary nodes and values in the
Applying a total derivative,
(0/3)=@/)+§-V, to Eq (2) the fully nonlinear

Lagrangian ~ manner.

free-surface conditions in the Lagrangian frame can be
modified as follows,
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where | represents node velocity on the free surface.

To deal with the moving nodes on the free surface,

material-node approach (=V9¢), in which free-surface nodes
trace water particles, is used. This approach makes the
free-surface boundary-condition simpler but need to employ
regriding process (rearranging the free-surface nodes every
several time steps). The regriding prevents the nodes from
crossing or piling up locally on the free-surface. In this study,
the scheme is carried out at every time step to achieve better
numerical stability.

A saw-tooth phenomenon on the free-surface causes the
simulation to be unstable, which may be arisen by variable
grid size against high-order aliasing. To avoid this numerical
instability a Chebyshev 5-point smoothing scheme is used
along the free surface during the time marching. This scheme
has been proved in the authors’ previous paper (Koo, 2003)
and is applied at every 5 time-step in the present study.

An artificial damping zone is only located at the right-end
of the domain to absorb the propagating wave energy. Both

., and 7-type damping terms are added to the dynamic and
kinematic free-surface conditions (Egs. (10) and (11)). The

optimized damping coefficients were adopted (#o =15 and

Hep = Ho) after comprehensive test.

op _ 1 2 r ¢
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E_g (V¢_V) V77+/1277 (11)
where,
r(x=1
_ y[[l—cos{—[ ]}] forx >/
H=9"" 20 1,
0 for x </

I is the length of computational domain (no damping zone,
35xb for the present case) and /; is the length of damping
zone (7 x b for the present case) to be long enough to absorb
all wave energy. The damping strength (u;) is designed to
grow gradually to the target constant value to minimize wave
reflection from the entrance of the damping zone.
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Fig. 2 Time history of slider location, velocity and
acceleration, =6 and Y. =0.25m,

Details of numerical schemes described above are shown in
authors’ previous papers (Koo et al, 2004 Koo and Kim,
2004).

2.2 Sliding mass configuration

A Gaussian bell shape of sliding mass is similar to that
employed by Lynett and Liu (2002) and the time-history of
the landslide is described as

SRR P IRES. O] (RN ESC

where, % and *. are the tangent hyperbolic inflection points
of the left and right sides of the mass, respectively, and S is
a shape function enabling to control the steepness of the slide
mass. Side boundaries and steepness factor are given by

0.5
cos(d) (13)

xi(t)=xc(t)—%bcos(0), xz(t)=xc(t)+%bcos(0), S=
where, % is the horizontal center of the sliding mass. The
angle of the slope is described by & (degree). When the
sliding vertical center, Y. is known with a given slope, the
initial horizontal center point, *(!=0) can be determined.
The length between % and *. along the slope is defined as b.
The submarine slider moves as a solid body (non-deformable)

and all the simulations presented in this study are
non-breaking. The height of sliding mass at the center is given

by

1 2 2
Ah= S [1+ tanh(bcos’ 6) | (1)

The slider motion is determined by an approximate analytic
solution (Watts, 1997; Grilli and Watts, 1999) and the velocity
and acceleration at the slider center can be driven by the first
and the second derivative of the displacement, respectively
(see Fig. 2).

X () =x,+s, ln[cosh i]

L (15)
B0
dr 1 (16)
d*x (t Y
2O _ o cosn b
dt 4 17)

where, So=V//a,, %=v/d, are described by an initial
acceleration (%) and terminal velocity (i), and these values
are given by

c VT2, (18)

where, C»=1.0 and C, =10 are an approximate added mass
and a drag coefficient of a circular cylinder, respectively.
Y=P/Ps represents a specific density of the mass. Watts
(1997) pointed out that the slider motion with specific density
7=2 is not sensitive to accurate values of added mass and
drag coefficients.

2.3 Water particle velocity and wave pressure

Velocity potential (#) at the target node inside the domain
can be calculated directly from Eq. (6). %s and 99,/9n) g on
the boundary at each time step are obtained as the time
marching is carried out. The matrixes of ¥ and its normal
derivative 90;/9" are determined from the target node and
instantaneous other boundary nodes.

After the velocity potentials (#s) at the target node and its
neighbor points are obtained, their gradients (V¢, particle
velocity) can be calculated using central difference formula.

The pressure on the body can be calculated from the
following Bernoulli's equation.

3 1
P=—pgz—p—¢

5 27V 19)

Using the total derivative (6/8)=(@/d)+] - v, Eq. (19)
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yields

1
P=—pgz—p%—5
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where, 7 is the node velocity on the sliding mass.

In case of a prescribed body motion, the total time
derivative of velocity potential /67 could be obtained
directly from the high-order finite difference formula. When
calculating the body pressure using Eq. (20), however, the

node velocity (¥) is needed, which is not easy to be
calculated. The node velocity was found to be significantly
affecting the mean horizontal force even if the 1%-order forces
can accurately be obtained. From this cause, the pressure can
be obtained from Eq. (19) using the acceleration-potential
method, which can directly calculate 0¢/0t instead of 68/dt,
The acceleration potential method, first formulated completely
by Tanizawa (1995), is known to be the most accurate and
consistent method to calculate the time derivative of velocity

potential (9¢/9¢).
The following boundary integral equation for ¢:(= 9¢/0¢)

may be solved in the same manner as Eq. (5) with proper
boundary conditions in the acceleration field.

%

oG
on % —87)ds

w4, [J@ e

The prescribed body boundary condition in the acceleration
field is described as
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Fig. 3 Comparison of surface elevation, Aj = 0.0383; fully
nonlinear simulation (= solid line), free-surface linear
simulation (= dotted line).
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where 9 4, are body accelerations, " . are normal vectors
and s represents tangential direction on the surface,
respectively. Since the first two acceleration terms of Eq. (22)
affect the boundary condition appreciably, the third term is
ignored in this study. Details of the acceleration potential
method are shown in Koo and Kim (2004).

3. Results and Discussion

A long wave induced by a sub-sea rigid slider is
simulated using the present fully nonlinear numerical wave
tank (NWT). For various landslide mass heights, many
important physical phenomena such as free-surface fluctuation,
water particle velocities, hydrodynamic pressure on the slope,
and wave run-up and depression on the beach are
investigated.

To ensure the accuracy of the produced results, a series of
convergence tests were carried out against the number of
nodes and the size of time step. The node number {nodes/b)

= 1071 and the time step ( #/V (g/b)) = 0.0313 are selected
for the ensuing simulations.

3.1 Comparison with other methods

For the verification of the nonlinear NWT results, the present
results are compared with those of linear NWT (Fig. 3) and
depth-integrated Boussinesq method (Fig. 4). The linear result
means that the free-surface condition is linearized but the
body-boundary condition is satisfied at the instantaneous
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4 Comparison of surface elevations of two different
methods A} = 0.0383; present (= solid line), depth
integrated Boussinesq method (= dotted line)
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position, so stil nonlinear. It is seen that the free-surface
depression is underestimated by the linear computation. As
the submarine slider moves down, the location of free-surface
depression follows the slider center.

In Fig. 4, the free surface snapshots of the present and
Lynett and Liu's depth-integrated Boussinesq method are
compared. The discrepancy between the two results increases
as the slider moves down further. Since the Boussinesq
equation is known to have accurate solutions only in shallow
water, its accuracy is expected to be worse as the generated
waves propagate toward the deeper water. It is also seen that
the free-surface depression grows as the mass moves into
deep water mainly due to the increasing slider velocity
causing bigger pressure distribution.
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Fig. 5 Comparsion of maximum depression on the free surface

with various Ak, Lin = linearized free surface
condition, Nonliln = fully nonlinear free surface

condition
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Fig. 6 Comparison of horizontal and vertical velocities at (x«,
z/yo = 04)

3.2 Cases of various mass heights

In Fig. 5, linear and nonlinear amplitudes of the maximum
free-surface depression for various land-slide heights (dh =
0.01, 0.03, 0.05, 0.07 and 0.1) are compared at four different
locations near x = xq.

The difference between linear and nonlinear results increases
significantly as the water depth and mass height increase.
Since the linear calculation means the free surface boundary
remains constant and the surface elevation is linearly
proportional to the input, the rate of depression change is
linear as the mass height increases. The depression change
rate of nonlinear results, however, is quadratic because the
free surface fluctuates significantly as the impact of slider on
the surface increases. As explained in Fig. 3, since the linear
calculation may underestimate the depression in the deep
water region, the discrepancy between two results greatly
increases as water depth increases.
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Fig. 8 Wave regression and run-up
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Therefore, the nonlinear effect of the maximum depression
could increase up to 65% compared with linear depression
when Ah/y4= 0.3.

Time histories of water particle velocity at x = x» and /4
= 04 for various mass heights are shown in Fig. 6. Since the
slider moves down in the positive x-direction on a 6-degree
slope, the horizontal particle velocity is negative and about 5
times faster than the vertical velocity. The first pick of the
water-particle velocity is induced by the initial motion of the
landslide, while the second pick is due to the propagating
waves generated by the slider.

The maximum pressure change normalized By hydrostatic
pressure is plotted in Fig. 7. As expected, the dynamic-to-static
ratio increases as the mass height increases. Since the surface
fluctuation magnifies at the shallow water in case of long
wave propagation, the effect of dynamic pressure significantly
increases as the water depth decreases.

The change of wave regression and run-up against the mass
height is shown in Fig. 8. Both magnitudes linearly increase
with the mass height. It is found that the magnitude of
regression is about 6-7 times bigger than that of wave run-up,
which may be due to the direction of sliding-mass motion
causing the adjacent fluid to push down to the sea bottom.

4. Conclusions

Using a 2D NWT based on boundary element method and
MEL approach with fully-nonlinear free-surface conditions and
a prescribed body motion, the time histories of free-surface
depression and rising induced by a Gaussian bell shape
landslide are simulated in the time domain

representing the early stage of the long wave generation and

sub-sea

propagation. Various slider heights are applied to the
developed model to investigate the sensitivity of results such
as maximum depression, run-up, particle velocity, pressure on
the slope. The present fully nonlinear model for submarine
landslide is confirmed through comparison with published
results by others. The nonlinear results are also compared
with those with linear free-surface conditions to assess the
respective nonlinear effects.

The magnitude of free surface depression increases as the
mass height increases. The nonlinear effect of the maximum
depression could increase up to 65% compared with linear
depression when Ah/y, = 03. This kind of nonlinear trend
cannot be reproduced by linear computation. The time series
of water particle velocity show two picks; the first pick is

induced by the initial motion of the landslide, and the second
pick is due to the propagating waves generated by the slider.

Since the surface fluctuation magnifies at the shallow water
in case of long wave propagation, the effect of dynamic
pressure significantly increases as the water depth decreases.
The wave run-up and regression increase linearly as the mass

height increases.
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