DOI QR코드

DOI QR Code

Application of Three-Dimensional Numerical Irregular wave Tank(3D-NIT) Model

3차원 불규칙 수치파동수조(3D-NIT) 모델의 적용성에 관한 연구

  • Lee, Kwang-Ho (Industry and Academia Cooperation Foundation, Kwandong University) ;
  • Baek, Dong-Jin (Department of Civil Engineering, Korea Maritime University) ;
  • Kim, Do-Sam (Department of Civil Engineering, Korea Maritime University)
  • 이광호 (관동대학교 산학협력단) ;
  • 백동진 (한국해양대학교 건설공학과) ;
  • 김도삼 (한국해양대학교 건설공학과)
  • Received : 2012.06.11
  • Accepted : 2012.10.26
  • Published : 2012.10.31

Abstract

In this study, 3D-NIT(3-Dimensional Numerical Irregular wave Tank) model in which regular wave as well as stable irregular wave can be generated in 3-dimensional numerical irregular wave tank was proposed. To verify validity, the following steps need to be conducted: 1) comparative analysis between calculated waveforms and targeted waveforms at the wave generating point, 2) comparative analysis with the existing experimental values of overtopping volume estimated, targeting shore protection structures installed on a slope bed, 3) comparison with the existing numerical and hydraulic experimental results through application in the analysis on the wave deformation by structures and wave force acting on the vertical cylindrical structures. Based on the results, characteristics of the breaking wave forces according to incident waves and interval distance of structures were identified through application of 3D-NIT model in the analysis on the breaking wave forces acting on the cylindrical structures installed on a slope bed, and reflection and overtopping was reviewed through application in the special breakwaters on the domestic fields. The numerical results obtained the 3D-NIT model are in good agreement with experimental results, and its applicaion to the complex-shpaed coastal structures is verified.

본 연구에서는 3차원수치파동수조에 규칙파뿐만 아니라 안정적인 불규칙파가 조파될 수 있는 새로운 조파시스템 3D-NIT(3-Dimensional Numerical Irregular wave Tank)모델을 제안한다. 그의 타당성을 검증하기 위하여 1) 조파지점에서 계산파형과 목표파형을 비교 검토하고, 2) 경사수심역에 설치된 호안구조물을 대상으로 산정된 기존 월파량에 대한 실험치와 비교 검토하며, 3) 연직원주 구조물에 작용하는 파력 및 구조물에 의한 파랑변형의 해석에 적용하여 기존의 수치 및 수리실험결과와 비교한다. 이상의 결과를 기초로 3D-NIT모델을 경사수심역에 설치된 원주구조물에 작용하는 쇄파력의 해석에 적용하여 입사파고, 구조물의 이격거리 등에 따른 작용쇄파력의 특성을 규명하고, 더불어 국내현장의 특수방파제에 적용하여 반사율, 월파량 등을 검토하였다. 그 결과 본 연구에서 제안하는 3D-NIT모델을 이용한 수치실험결과는 기존의 수리모형실험을 잘 재현하고 있음을 확인하였고 복잡한 형상을 갖는 해안구조물의 해석에 적용할 수 있음이 확인되었다.

Keywords

References

  1. 김도삼, 이광호, 유현상, 김창훈, 손병규(2004), 불규칙 파동장에 있어서 VOF법에 의한 투과성잠제의 파랑제 특성에 관한 연구, 한국해안.해양공학회논문집, 16(3), pp. 121-129.
  2. 김도삼, 이광호, 허동수, 김정수(2001), VOF법에 기초한 불투과 잠제 주변 파동장의 해석, 대한토목학회논문집, 제21권, 제1호, pp. 31-35.
  3. 신동훈(2008), 연직주상구조물에 작용하는 비선형파력과 구조물에 의한 비선형파랑변형 및 지형변동의 해석, 박사논문, 한국해양대학교, pp. 89-94.
  4. 이광호, 이상기, 신동훈, 김도삼(2007), 3차원 VOF법에 의한 연직 주상구조물에 작용하는 파력과 구조물에 의한 파랑변형 해석, 한국해양공학회지, 12(2), pp. 12-21.
  5. 이민기(2007), CADMAS-SURF에 의한 불규칙파랑의 해석과 월파량추산에 관한 연구, 석사학위논문, 한국해양대학교, p. 38.
  6. 조효제, 구자삼, 이상길(2001), 과도 수파중의 복합실린더에 작용하는 쇄파력에 관한 연구, 한국해양공학회지, 15(4), pp. 3-8.
  7. 허동수, 김창훈, 이광호, 김도삼(2005). 파.구조물.지반의 비선형 동적응답해석을 위한 직접수치해석기법의 개발, 한국해안.해양공학회지, 17(2), pp. 86-97.
  8. 喜岡涉, 石田昭(1984), 円柱に作用する第2次近似回折波波力, 海岸工學講演會論文集, 31, pp. 620-624.
  9. 榊山勉, 阿部宣行, 鹿島遼一(1990), ポーラスモデルに よる透過性構造物周邊の非線形波動解析, 海岸工學論文集, 37, pp. 554-558.
  10. 村上啓介, 吉田明德, 入江功(1993), 任意斷面形狀の鉛直柱体と波の非線型干涉解析法. 海岸工學論文集, 40(2), pp. 846-850.
  11. 眞田武(1998), 大型海洋構造物による非線形回折散亂波の2次近似解析解とその応用に關する硏究, 工學博士學位論文, 名古屋大學大學院, p. 223.
  12. CDIT(2001), Research and Development of Numerical Wave Channel(CADMAS-SURF), CDIT library, No. 12, p. 296.
  13. Chakrabarti, S. K. and W. A. Tam(1975), Interaction of waves with large vertical cylinder, J. Ship Res., 19, pp. 23-33.
  14. Fujiwara, R.(2005), A method for generation irregular waves using CADMAS-SURF and applicability for wave transformation and overtopping, Coastal Eng., JSCE, 52, pp. 41-45.
  15. Goda, Y.(1985), Random seas and design of maritime structures, University of Tokyo press, p. 323.
  16. Goda, Y. and Y. Suzuki(1976), Estimation of incident and reflected waves in random wave experiments, Proc. 15th ICCE, ASCE, pp. 828-845.
  17. Hinatsu, M.(1992), Numerical simulation of unsteady viscous nonlinear waves using moving grid system fitted on a free surface, J. Kansai Soc. Nav. Archit. Japan, 217, pp. 1-11.
  18. Iwata, K., K. Kawasaki and D. S. Kim(1996), Breaking limit, breaking and post breaking wave deformation due to submerged structure, ICCE, 2, pp. 2338-2351.
  19. Lee, K. H. and N. Mizutani(2009), A numerical wave tank using directing-forcing immersed boundary method and its application to wave force on a horizontal cylinder, 51(1), pp. 27-48.
  20. Mitsuyasu, H.(1970), On the growth of spectrum of windgenerated waves(2)-spectral shape of wind waves at finite fetch, Proc. Japanese Conf. on Coastal Eng., JSCE, pp. 1-7.
  21. Tanimoto, K. and Y. Yoshimoto(1982), Theoretical and experimental study of reflection coefficient for wave dissipating caisson with a permeable front wall, Report of the port and harbour research institute, 23(3), pp. 43-77.
  22. Troch, P.(1997), VOFbreak, a numerical model for simulation of wave interaction with rubble mound breakwater, Proc. 27th IAHR Congress, San Francisco, USA, pp. 1366-1371.
  23. Van der Meer, J. W., H. A. H. Petit, P. van den Bosch, G. Klopmanm and R. D. Broekens(1992), Numerical simulation of wave motion on and in coastal structures, Proc. 23rd ICCE, ASCE, pp. 1772-1784.