• Title/Summary/Keyword: 2-switch buck-boost converter

Search Result 13, Processing Time 0.025 seconds

A Cost Effective DC Link Variable Inverter Using 2-Switch Buck-Boost Converter (2-스위치 Buck-Boost 컨버터를 이용한 DC 링크 전압 가변형 인버터 설계)

  • Kang, Hyun-Soo;Kim, Jun-Hyung;Lee, Byoung-Kuk;Hur, Jin
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.5
    • /
    • pp.950-959
    • /
    • 2009
  • In this paper, a dc link voltage variable inverter system is proposed, which consists of a two-switch buck-boost converter and a four-switch inverter. In addition, as the current and torque ripples are generated by a voltage difference between back EMF and dc link voltage, these ripples could be reduced according to the controlled dc-link voltage according to the motor speed. The validity of the proposed inverter is verified by informative simulation and experimental results.

Balanced Buck-Boost Switching Converter to Reduce Commom-mode Conducted Noise

  • Shoyama, Masahito;Ohba, Masashi;Ninomiya, Tamotsu
    • Journal of Power Electronics
    • /
    • v.2 no.2
    • /
    • pp.139-145
    • /
    • 2002
  • Because conventional switching converters have been usually using unbalanced circuit topologies, parasitice between the drain/collertor of an active switch and frame ground through its heat sink may generate the commom-mode conducted noise. We have proposed a balanced switching converter circuit, whitch is an effective way to reduce the commom-mode converter version of the balanced switching converter was presented and the mechanism of the commom-mode noise reduction was explained using equivalent circuits. This paper extends the concept of the balanced switch converter circuit and presents a buck-boost converter version of the blanced switching converter. The feature of common-mode niose reduction is confirmed by experimental resuits and the mechanisem of the commom-mode niose reduction is explained using equivalent circuits.

Modeling and Analysis of Active-Clamp, Full-Bridge Boost Converter (능동 클램프 풀브릿지 부스트 컨버터에 대한 모델링 및 분석)

  • Kim Marn-Go
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.10 no.2
    • /
    • pp.169-176
    • /
    • 2005
  • In this paper, a DC and small-signal AC modeling for the active-clamp, ful1-bridge boost converter is described. Based on the operation principle, the ac part of the converter can be replaced by a dc counterpart. Then, a conceptual equivalent circuit is derived by rearranging the switches. The equivalent circuit for this converter consists of CCM(Continuous conduction mode) boost and DCM(Discontinuous conduction mode) buck converter. The analyses for the equivalent CCM boost and DCM buck converter are done using the model of PWM switch. The theoretical modeling results are confirmed through experiment or SIMPLIS simulation.

Low-Cost High-Efficiency Two-Stage Cascaded Converter of Step-Down Buck and Tapped-Inductor Boost for Photovoltaic Micro-Inverters (태양광 마이크로 인버터를 위한 탭인덕터 부스트 및 강압형 컨버터 캐스케이드 타입 저가형 고효율 전력변환기)

  • Jang, Jong-Ho;Shin, Jong-Hyun;Park, Joung-Hu
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.19 no.2
    • /
    • pp.157-163
    • /
    • 2014
  • This paper proposes a two-stage step-down buck and a tapped-inductor boost cascaded converter for high efficiency photovoltaic micro-inverter applications. The proposed inverter is a new structure to inject a rectified sinusoidal current into a low-frequency switching inverter for single-phase grid with unity power factor. To build a rectified-waveform of the output current. the converter employs both of a high efficiency step-up and a step-down converter in cascade. In step-down mode, tapped inductor(TI) boost converter stops and the buck converter operates alone. In boost mode, the TI converter operates with the halt of buck operation. The converter provides a rectified current to low frequency inverter, then the inverter converts the current into a unity power-factor sinusoidal waveform. By applying a TI, the converter can decrease the turn-on ratios of the main switch in TI boost converter even with an extreme step-up operation. The performance validation of the proposed design is confirmed by an experimental results of a 120W hardware prototype.

A Design of Current-mode Buck-Boost Converter using Multiple Switch with ESD Protection Devices (ESD 보호 소자를 탑재한 다중 스위치 전류모드 Buck-Boost Converter)

  • Kim, Kyung-Hwan;Lee, Byung-Suk;Kim, Dong-Su;Park, Won-Suk;Jung, Jun-Mo
    • Journal of IKEEE
    • /
    • v.15 no.4
    • /
    • pp.330-338
    • /
    • 2011
  • In this paper, a current-mode buck-boost converter using Multiple switching devices is presented. The efficiency of the proposed converter is higher than that of conventional buck-boost converter. In order to improve the power efficiency at the high current level, the proposed converter is controlled with PWM(pulse width modulation) method. The converter has maximum output current 300mA, input voltage 3.3V, output voltage from 700mV to 12V, 1.5MHz oscillation frequency, and maximum efficiency 90%. Moreover, this paper proposes watchdog circuits in order to ensure the reliability and to improve the performance of dc-dc converters. An electrostatic discharge(ESD) protection circuit for deep submicron CMOS technology is presented. The proposed circuit has low triggering voltage using gate-substrate biasing techniques. Simulated result shows that the proposed ESD protection circuit has lower triggering voltage(4.1V) than that of conventional ggNMOS(8.2V).

High Efficiency H-Bridge Multilevel Inverter System Using Bidirectional Switches (양방향 스위치를 이용한 고효율 H-Bridge 멀티레벨 인버터 시스템)

  • Lee, Hwa-Chun;Hwang, Jung-Goo;Kim, Sun-Pil;Choi, Woo-Seok;Lee, Sang-Hyeok;Park, Seong-Mi;Park, Sung-Jun
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.28 no.10
    • /
    • pp.16-26
    • /
    • 2014
  • This paper proposes new 13-level inverter topology and DC/DC converter buck-boost structure topology for multilevel, compounding uni-directional and bi-directional switches, and proposes high-efficient multilevel inverter system in which the proposed two PCS(Power Conditioning System) was connected in series. In proposed multilevel inverter of forming a output 13-level phase voltage by using total 18 switching parts, Then bi-directional switch has a characteristic of reducing conduction loss and controlling the reactive power effectively by separating electrically from the neutral point. DC/DC converter for supplying in dependent 3 DC voltage to the proposed multi-level inverter generates 180-degree phase shifted PWM by the symmetrically combined structure of 2 buck-boost converter and twice switching frequency efficiency can be obtained, meanwhile, the converter can step up/down the output voltage and 20% output can be generated comparing the input voltage. This proposed system is verified with the simulation and laboratory test.

A Single-phase Buck-boost AC-AC Converter with Three Legs

  • Zhou, Min;Sun, Yao;Su, Mei;Li, Xing;Liu, Fulin;Liu, Yonglu
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.2
    • /
    • pp.838-848
    • /
    • 2018
  • This paper proposes a single-phase buck-boost AC-AC converter. It consists of three legs with six switching units (each unit is composed of an active switch and a diode) and its input and output ports share a common ground. It can provide buck-boost voltage operation and immune from shoot-through problem. Since only two switching units are involved in the current paths, the conduction losses are low, which improves the system efficiency. The operation principle of the proposed circuit is firstly presented, and then, various operation conditions are introduced to achieve different output voltages with step-changed frequencies. Additionally, the parameters design and comparative analysis of the power losses are also given. Finally, experimental results verify the correctness of the proposed converter.

A Design of Three Switch Buck-Boost Converter (3개의 스위치를 이용한 벅-부스트 컨버터 설계)

  • Koo, Yong-Seo;Jung, Jun-Mo
    • Journal of IKEEE
    • /
    • v.14 no.2
    • /
    • pp.82-89
    • /
    • 2010
  • In this paper, a buck-boost converter using three DTMOS(Dynamic Threshold Voltage MOSFET) switching devices is presented. The efficiency of the proposed converter is higher than that of conventional buck-boost converter. DTMOS with low on-resistance is designed to decrease conduction loss. The threshold voltage of DTMOS drops as the gate voltage increases, resulting in a much higher current handling capability than standard MOSFET. In order to improve the power efficiency at the high current level, the proposed converter is controlled with PWM(pulse width modulation) method. The converter has maximum output current 300mA, input voltage 3.3V, output voltage from 700mV to 12V, 1.2MHz oscillation frequency, and maximum efficiency 90%. Moreover, the LDO(low drop-out) is designed to increase the converting efficiency at the standby mode below 1mA.

Design of Cost Effective PAM Inverter using 2-Switch Buck-Boost Converter (2-스위치 Buck-Boost 컨버터를 이용한 저가형 PAM 인버터 설계)

  • Kim, Jun-Hyung;Kang, Hyun-Soo;Lee, Byoung-Kuk
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.892-893
    • /
    • 2008
  • 본 논문에서는, 기존의 PAM 인버터와는 달리 저 단가 구현 및 높은 성능을 낼 수 PAM 인버터 구조에 대해 고찰한다. 배터리를 전원으로 사용하는 일반적인 인버터의 경우 초기기동 및 저속운전 영역에서는 배터리 전압으로 인해 전류 및 토크 리플이 크며, 배터리 SOC의 최소치 보다 낮은 역기전력을 갖는 전동기만을 사용할 수 있다. 이를 해결하기 위해 2-스위치 Buck-Boost 컨버터와 4-스위치 인버터로 구성된 새로운 PAM 인버터 시스템을 제안한다. 제안된 시스템은 DC 링크 가변을 통해 역기전력이 낮은 저속운전영역에서는 감압하고 반대로 역기전력이 높은 고속운전영역에서는 승압시킬 수 있어 전류 및 토크 리플을 줄일 수 있다. 마지막으로 시뮬레이션을 통하여 제안된 시스템의 적용 가능성을 검증한다.

  • PDF

A Multi-Load Shoring Characteristic Using Novel Buck-Boost Chopper Circuit (새로운 승·강압 초퍼 회로를 이용한 부하 다분할 특성)

  • Suh, Ki-Young;Mun, Sang-Pil;Kwon, Soon-Kurl;Lee, Hyun-Woo;Jung, Sang-Hwa
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.19 no.2
    • /
    • pp.42-48
    • /
    • 2005
  • A DC-DC converter is being widely used for various household appliances and for industry applications. The DC-CC converter is powered from single battery, and the voltage is varied according to the purpose. In the vehicle, various accessories whose electric power is different are being un4 Thus, plural number of DC-DC converter should be provided, so these situations bring complicated circuits, and accordingly, higher cost. Under such backgrounds, in this paper, we propose a novel buck-boost chopper circuit with simply configuration which can supply to two or more different output loads. The propose chewer circuit can control output voltages by controlling duty ratio by using typically two switching devices, which is composed by single boost-switch and single buck-switch. The output voltage can be controlled widely. A few modified circuits developed from the fundamental circuit are represented including the general multi-load circuit. And all this merits and appropriateness was proved by computer simulation and experience.