• Title/Summary/Keyword: 2-prime ideal

Search Result 122, Processing Time 0.019 seconds

Ideal Theory in Commutative A-semirings

  • Allen, Paul J.;Neggers, Joseph;Kim, Hee Sik
    • Kyungpook Mathematical Journal
    • /
    • v.46 no.2
    • /
    • pp.261-271
    • /
    • 2006
  • In this paper, we investigate and characterize the class of A-semirings. A characterization of the Thierrin radical of a proper ideal of an A-semiring is given. Moreover, when P is a Q-ideal in the semiring R, it is shown that P is primary if and only if R/P is nilpotent.

  • PDF

GRADED w-NOETHERIAN MODULES OVER GRADED RINGS

  • Wu, Xiaoying
    • Bulletin of the Korean Mathematical Society
    • /
    • v.57 no.5
    • /
    • pp.1319-1334
    • /
    • 2020
  • In this paper, we study the basic theory of the category of graded w-Noetherian modules over a graded ring R. Some elementary concepts, such as w-envelope of graded modules, graded w-Noetherian rings and so on, are introduced. It is shown that: (1) A graded domain R is graded w-Noetherian if and only if Rg𝔪 is a graded Noetherian ring for any gr-maximal w-ideal m of R, and there are only finite numbers of gr-maximal w-ideals including a for any nonzero homogeneous element a. (2) Let R be a strongly graded ring. Then R is a graded w-Noetherian ring if and only if Re is a w-Noetherian ring. (3) Let R be a graded w-Noetherian domain and let a ∈ R be a homogeneous element. Suppose 𝖕 is a minimal graded prime ideal of (a). Then the graded height of the graded prime ideal 𝖕 is at most 1.

NOTES ON GENERALIZED DERIVATIONS ON LIE IDEALS IN PRIME RINGS

  • Dhara, Basudeb;Filippis, Vincenzo De
    • Bulletin of the Korean Mathematical Society
    • /
    • v.46 no.3
    • /
    • pp.599-605
    • /
    • 2009
  • Let R be a prime ring, H a generalized derivation of R and L a noncommutative Lie ideal of R. Suppose that $u^sH(u)u^t$ = 0 for all u $\in$ L, where s $\geq$ 0, t $\geq$ 0 are fixed integers. Then H(x) = 0 for all x $\in$ R unless char R = 2 and R satisfies $S_4$, the standard identity in four variables.

ON LIE IDEALS OF PRIME RINGS WITH GENERALIZED JORDAN DERIVATION

  • Golbasi, Oznur;Aydin, Neset
    • East Asian mathematical journal
    • /
    • v.21 no.1
    • /
    • pp.21-26
    • /
    • 2005
  • The purpose of this paper is to show that every generalized Jordan derivation of prime ring with characteristic not two is a generalized derivation on a nonzero Lie ideal U of R such that $u^2{\in}U\;for\;{\forall}u{\in}U$ which is a generalization of the well-known result of I. N. Herstein.

  • PDF

Generalized Derivations on ∗-prime Rings

  • Ashraf, Mohammad;Jamal, Malik Rashid
    • Kyungpook Mathematical Journal
    • /
    • v.58 no.3
    • /
    • pp.481-488
    • /
    • 2018
  • Let I be a ${\ast}$-ideal on a 2-torsion free ${\ast}$-prime ring and $F:R{\rightarrow}R$ a generalized derivation with an associated derivation $d:R{\rightarrow}R$. The aim of this paper is to explore the condition under which generalized derivation F becomes a left centralizer i.e., associated derivation d becomes a trivial map (i.e., zero map) on R.

STUDY OF QUOTIENT NEAR-RINGS WITH ADDITIVE MAPS

  • Abdelkarim Boua;Abderrahmane Raji;Abdelilah Zerbane
    • Communications of the Korean Mathematical Society
    • /
    • v.39 no.2
    • /
    • pp.353-361
    • /
    • 2024
  • We consider 𝒩 to be a 3-prime field and 𝒫 to be a prime ideal of 𝒩. In this paper, we study the commutativity of the quotient near-ring 𝒩/𝒫 with left multipliers and derivations satisfying certain identities on 𝒫, generalizing some well-known results in the literature. Furthermore, an example is given to illustrate the necessity of our hypotheses.

ZPI Property In Amalgamated Duplication Ring

  • Hamed, Ahmed;Malek, Achraf
    • Kyungpook Mathematical Journal
    • /
    • v.62 no.2
    • /
    • pp.205-211
    • /
    • 2022
  • Let A be a commutative ring. We say that A is a ZPI ring if every proper ideal of A is a finite product of prime ideals [5]. In this paper, we study when the amalgamated duplication of A along an ideal I, A ⋈ I to be a ZPI ring. We show that if I is an idempotent ideal of A, then A is a ZPI ring if and only if A ⋈ I is a ZPI ring.

PRIME FACTORIZATION OF IDEALS IN COMMUTATIVE RINGS, WITH A FOCUS ON KRULL RINGS

  • Gyu Whan Chang;Jun Seok Oh
    • Journal of the Korean Mathematical Society
    • /
    • v.60 no.2
    • /
    • pp.407-464
    • /
    • 2023
  • Let R be a commutative ring with identity. The structure theorem says that R is a PIR (resp., UFR, general ZPI-ring, π-ring) if and only if R is a finite direct product of PIDs (resp., UFDs, Dedekind domains, π-domains) and special primary rings. All of these four types of integral domains are Krull domains, so motivated by the structure theorem, we study the prime factorization of ideals in a ring that is a finite direct product of Krull domains and special primary rings. Such a ring will be called a general Krull ring. It is known that Krull domains can be characterized by the star operations v or t as follows: An integral domain R is a Krull domain if and only if every nonzero proper principal ideal of R can be written as a finite v- or t-product of prime ideals. However, this is not true for general Krull rings. In this paper, we introduce a new star operation u on R, so that R is a general Krull ring if and only if every proper principal ideal of R can be written as a finite u-product of prime ideals. We also study several ring-theoretic properties of general Krull rings including Kaplansky-type theorem, Mori-Nagata theorem, Nagata rings, and Noetherian property.

TRACE PROPERTIES AND INTEGRAL DOMAINS, III

  • Lucas, Thomas G.;Mimouni, Abdeslam
    • Bulletin of the Korean Mathematical Society
    • /
    • v.59 no.2
    • /
    • pp.419-429
    • /
    • 2022
  • An integral domain R is an RTP domain (or has the radical trace property) (resp. an LTP domain) if I(R : I) is a radical ideal for each nonzero noninvertible ideal I (resp. I(R : I)RP = PRP for each minimal prime P of I(R : I)). Clearly each RTP domain is an LTP domain, but whether the two are equivalent is open except in certain special cases. In this paper, we study the descent of these notions from particular overrings of R to R itself.