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Abstract. In this paper, we investigate and characterize the class of A-semirings. A

characterization of the Thierrin radical of a proper ideal of an A-semiring is given. More-

over, when P is a Q-ideal in the semiring R, it is shown that P is primary if and only if

R/P is nilpotent.

The concept of semirings was introduced by H. S. Vandiver in 1935 and has
since then been studied by many authors (e.g., [1]-[5], [11]-[13]). In several papers
from 1956 to 1958, K. Iséki ([7]-[10]) developed a large amount of ideal theory for
semirings that are not necessarily commutative under either operation. Many of
Iséki’s results were topological in nature; however, he gave several characterizations
of prime ideals and has defined and studied the Thierrin radical of an ideal. It is
the purpose of this paper to present a development of ideal theory for commutative
semirings and to connect this theory with the theory developed by Iséki. P. J. Allen
([1]) introduced the notion of a Q-ideal and a construction process was presented
by which one can build the quotient structure of a semiring modulo a Q-ideal.
Maximal homomorphisms were defined and examples of such homomorphisms were
given. Using these notions, the Fundamental Theorem of Homomorphisms for rings
was generalized to include a large class of semirings. The results proven in [1] will be
used throughout this paper. Since the theory of ideals plays an important role in the
theory of quotient semirings, in this paper, we will make an intensive study of the
notions of prime, completely prime, and primary ideals in commutative semrings.
The notion of an A-semiring will be defined and a characterization of an A-semiring
will be presented. With the aid of these notions, further algebraic properties of
the radical of an ideal in an A-semiring will be given. It will also be shown that a
proper Q-ideal I in the semiring R is primary if and only if every zero divisor in
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R/I in nilpotent.

There are many different definitions of a semiring appearing in the literature.
Throughout this paper, a semiring will be defined as follows:

Definition 1. A set R together with two associative binary operations called
addition and multiplication (denoted by + and ·, respectively) will be called a
semiring provided:

(i) addition is a commutative operation;

(ii) there exist 0 ∈ R such that x + 0 = x and x0 = 0x = 0 for each x ∈ R, and

(iii) multiplication distributes over addition both from the left and from the right.

Definition 2. A subset I of a semiring R will be called an ideal if a, b ∈ I and
r ∈ R implies a + b ∈ I, ra ∈ I and ar ∈ I.

Definition 3. An ideal P in the semiring R is said to be prime provided;

(1) P 6= R; and

(2) if A and B are ideals in R such that AB ⊂ P , then A ⊂ P or B ⊂ P , where
AB = {ab | a ∈ A and b ∈ B}.

Definition 4. An ideal P in the semiring R is said to be completely prime provided;

(1) P 6= R; and

(2) if a, b ∈ R such that ab ∈ P , then a ∈ P or b ∈ P .

Prime ideals in commutative semirings can be characterized in the following
way:

Theorem 5. If P is a proper ideal in a commutative semiring R, then the following
statements are equivalent:

(1) P is prime;

(2) P is completely prime;

(3) if A and B are ideals in R such that P $ A and P $ B, then AB * P .

Proof. Iséki ([8]) proved that prime and completely prime are equivalent concepts
in a commutative semiring.

(1) ⇒ (3): Let P be a prime ideal in the commutative semiring R, and let A
and B be ideals in R such that P $ A and P $ B. Assume AB ⊆ P . Since P is
prime, it follows that A ⊂ P or B ⊂ P , a contradiction. Therefore, AB * P .

(3) ⇒ (2): Assume P is not completely prime. Thus, there exists a, b ∈ R such
that ab ∈ P , where a 6∈ P and b 6∈ P . Let N denote the natural numbers and let
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Na = {na |n ∈ N}, where na denotes n sums of a. Let Ca denote the union of the
following collection of subsets of R:

{P, Ra,Na, P + Ra, P + Na,Ra + Na, P + Ra + Na}.

Similarly, let Cb denote the union of the collection

{P,Rb, Nb, P + Rb, P + Nb,Rb + Nb, P + Rb + Nb}.

An inspection will show that Ca and Cb are ideals in R. Moreover, P $ Ca and
P $ Cb. Since P satisfies statement (3), it follows that CaCb * P . Moreover, an
inspection of the form of each element in CaCb shows that CaCb ⊂ P , a contradic-
tion. ¤

Definition 6. Let S be a non-empty, multiplicatively closed subset (s1, s2 ∈ S
implies s1s2 ∈ S) of a semiring R. An ideal P of R is said to be maximal with
respect to S provided;

(1) P ∩ S = ∅; and

(2) if A is an ideal of R such that P $ A, then A ∩ S 6= ∅.

Theorem 7. Let S be a non-empty, multiplicatively closed subset of a semiring R.
If A is an ideal in R such that A ∩ S = ∅, then there exists an ideal P of R such
that A ⊂ P and P is maximal with respect to S.

Proof. Let F denote the collection of all ideals in R which contain A and are
disjoint from S. Since A ∈ F , it follows that F 6= ∅. Define a relation ≤ on F by
B1 ≤ B2 ⇔ B1 ⊂ B2. F is a partially ordered set under the relation ≤. If {Bi}i∈I

is a non-empty chain in F , then ∪i∈IBi ∈ F and Bi ≤ ∪i∈IBi, for every i ∈ I.
Thus, every non-empty chain in F has an upper bound in F . Zorn’s lemma implies
that F has a maximal element. Such a maximal element satisfies the conclusion of
the theorem. ¤

Theorem 8. Let S be a non-empty, multiplicatively closed subset of a commutative
semiring R and let P be an ideal in R. If P is maximal with respect to S, then P
is prime.

Proof. Let B and C be ideals in R such that P $ B and P $ C. Since P is maximal
with respect to S, it follows that B ∩ S 6= ∅ and C ∩ S 6= ∅. Let b ∈ B ∩ S and
c ∈ C ∩ S. Since S is closed under multiplication, it follows that bc ∈ (BC) ∩ S.
Since P ∩ S = ∅, it follows that BC * P . Theorem 5 implies P is prime. ¤

Definition 9. An ideal M in a semiring R is said to be maximal provided;

(1) M $ R; and

(2) if A is an ideal in R such that M $ A, then A = R.
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For semirings with an identity, Definition 6 and Definition 7 can be connected
by the following:

Theorem 10. Let M be an ideal in the semiring R. If R has an identity 1, then
the following statements are equivalent:

(1) M is maximal;

(2) M is maximal with respect to {1}.

Proof. (1) ⇒ (2): Since M is maximal, it follows that M ∩ {1} = ∅. Theorem 7
implies there exists an ideal P in R such that P is maximal with respect to {1} and
M ⊂ P . Clearly, P ∩ {1} = ∅ implies P $ R. Since M is maximal, it follows that
M = P . Thus, M is maximal with respect to {1}.

(2)⇒ (1): Assume M is not maximal. Then there exists an ideal A in R such
that M $ A $ R. Clearly, A $ R implies A ∩ {1} = ∅. Thus M is not maximal
with respect to {1}, a contradiction. ¤

The following theorem is an immediate consequence of Theorem 8 and Theorem
10.

Theorem 11. Let R be a commutative semiring with an identity. If M is a maximal
ideal in R, then M is prime.

The following example shows that a maximal ideal in a commutative semiring
without an identity may not be prime.

Example 12. Let R denote the semiring of positive even integers with the usual
addition and multiplication. If M = {x ∈ R |x > 2}, then M is a maximal ideal in
R. Since 2 6∈ M and 2 · 2 = 4 ∈ M , it follows that M is not prime.

In Iséki’s development of the Thierrin radical of an ideal, it was necessary to
know that an ideal was always contained in a completely prime ideal. Consequently,
Iséki did not demand that a completely prime ideal or a prime ideal be proper.
Thus, any semiring was a prime and a completely prime ideal. Under the proper
circumstances, the Thierrin radical of an ideal could be the entire semiring.

When defining the radical of an ideal in this paper, it will be necessary to
know that a proper ideal is always contained in a prime ideal. Since Definition 3
demands that a prime ideal be a proper ideal, we cannot attack this problem in
Iséki’s manner.

Definition 13. A semiring R is said to be an A-semiring provided;

(1) R is commutative; and

(2) every proper ideal in R is contained in a prime ideal of R.

Theorem 14. A commutative semiring R is an A-semiring if and only if the
complement of every proper ideal contains a non-empty multiplicatively closed set.
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Proof. If R is an A-semiring , it is clear that the complement of every proper ideal
contains a non-empty multiplicatively closed set. Let B be a proper ideal in R and
let S be a non-empty multiplicatively closed subset of R − B. Theorem 7 implies
there exists an ideal P in R such that B ⊂ P and P is maximal with respect to S.
Theorem 8 implies P is prime. ¤

Corollary 15. If R is a commutative semiring with an identity 1, then R is an
A-semiring .

Proof. If B is a proper ideal in R, then {1} ⊂ R−B. ¤
The following examples will show there exist A-semirings that do not have an

identity.

Example 16. Let R be the semiring of non-negative integers where a + b =
max{a, b} and ab = min{a, b}. Then R does not have an identity, and every proper
ideal in R is prime.

Example 17. Let J4 denote the ring of integers modulo 4 and let R be the
semiring in Example 16. Let J4 ⊕ R = {(a, b) | a ∈ J4 and b ∈ R} denote the
direct sum of the semirings J4 and R. Then J4 ⊕ R is a commutative semiring.
Clearly, J4 ⊕ R does not have an identity. If m ∈ R, an inspection will show that
Im = {(0, n) ∈ J4 ⊕ R |n ≤ m} is a proper ideal in J4 ⊕ R. Moreover, Im is
not prime, for any m ∈ R. The following argument will show that J4 ⊕R is an A-
semiring . Let M be a proper ideal in J4⊕R. Assume (1,m) belongs to M , for each
m ∈ R. Consequently, (2,m) = (1,m) + (1,m) ∈ M , (3, m) = (1,m) + (2,m) ∈ M ,
and (0,m) = (2,m) + (2,m) ∈ M for each m ∈ R. Therefore, M = J4 ⊕ R, a
contradiction. Thus, there exists an m0 ∈ R such that (1,m0) 6∈ M , and it is
clear that {(1,m0)} is a non-empty multiplicatively closed subset of (J4 ⊕R)−M .
Theorem 14 implies J4 ⊕R is an A-semiring .

Definition 18. Let B be a proper ideal in an A-semiring R. The radical of B is
denoted by

√
B and is defined to be the intersection of all of the prime ideals in R

that contain B.

The following theorem is an immediate consequence of Definition 18.

Theorem 19. If B is a proper ideal in an A-semiring R, then
√

B is an ideal in
R and B ⊂ √

B.

Definition 20. A proper ideal B in an A-semiring R is said to be semi-prime if
B =

√
B.

Theorem 21. If B is a prime ideal in an A-semiring R, then B is semi-prime.

Proof. Theorem 19 implies B ⊂ √
B. Let {Pi}i∈I be the collection of all prime

ideals in R that contain B. Clearly, B ∈ {Pi}i∈I and
√

B = ∩i∈IPi ⊂ B. Thus,
B =

√
B. ¤

The following example will show that there exist semi-prime ideals that are not
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prime.

Example 22. The semiring Z+ of non-negative integers is an A-semiring . Let (6)
denote the ideal generated by 6. Since 1 ∈ Z+, it follows that (6) = {6n |n ∈ Z+}.
Since 2 6∈ (6), 3 6∈ (6) and 2 · 3 = 6 ∈ (6), it is clear that (6) is not prime. The
only prime ideals in Z+ that contain (6) are (2), (3) and {0} ∪ {x ∈ Z+ |x > 1}.
Since (2)∩ (3)∩ ({0}∪ {x ∈ Z+ |x > 1}) is equal to (6), it follows that (6) =

√
(6).

Therefore, (6) is semi-prime.

Theorem 23. If B is a proper ideal in an A-semiring R, then
√

B = {x ∈ R| ∃n ∈
N such that xn ∈ B}, where N denotes the natural numbers.

Proof. Let x ∈ R such that for some positive integer n it is valid that xn ∈ B. Let
P be a prime ideal in R that contains B. Since P is prime and xn ∈ P , it follows
that x ∈ P . Since P was an arbitrary prime ideal in R containing B, it follows
that x ∈ √B. Conversely, assume there exists x ∈ √B such that xn 6∈ B, for any
n ∈ N . Choose one such x and let S = {xn |n ∈ N}. Since S is a non-empty,
multiplicatively closed set in R such that S ∩B = ∅, Theorem 7 implies that there
exists an ideal P in R such that B ⊂ P and P is maximal with respect to S.
Theorem 8 implies that P is prime. Since P ∩ S = ∅ and x ∈ S, it follows that
x 6∈ P . Thus x 6∈ √B, a contradiction. ¤

Corollary 24. If B is a proper ideal in an A-semiring R, then
√

B is semi-prime.

Proof. It is clear that the radical of B is a proper ideal in R. Theorem 19 implies√
B ⊂

√√
B. Let x ∈

√√
B. Theorem 23 implies that there exists an n ∈ N such

that xn ∈ √B. Moreover, Theorem 23 now implies that there exists an m ∈ N such
that (xn)m ∈ B. Thus, xn·m ∈ B and Theorem 23 implies x ∈ √B. ¤

Corollary 25. Let A and B be proper ideals in an A-semiring R. Then

(1) if A ⊂ B, then
√

A ⊂ √
B;

(2) if A ∩B 6= ∅, then
√

A ∩B =
√

A ∩√B.

Proof. (1) If x ∈ √A, then there exists an n ∈ N such that xn ∈ A ⊂ B. Hence
x ∈ √B.

(2) Since A ∩ B 6= ∅, it is clear that A ∩ B is an ideal in R. Let x ∈ √A ∩B.
Then there exists an n ∈ N such that xn ∈ A ∩ B. Therefore, xn ∈ A and xn ∈ B
and it follows that x ∈ √

A and x ∈ √
B. Hence, x ∈ √

A ∩ √B. Consequently,
x ∈ √A ∩ √B implies that there exist n,m ∈ N such that xn ∈ A and xm ∈ B.
Clearly, xn·m ∈ A ∩B. Thus, x ∈ √A ∩B. ¤

Theorem 23 gives an important characterization of the radical of an ideal in an
A-semiring . Another characterization of the radical of an ideal will be developed.
With the aid of this characterization, the concepts of the radical of an ideal in an
A-semiring and of the Thierrin radical of an ideal can be connected.
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Definition 26. Let B be an ideal in a semiring R. A prime ideal M in R will be
called a minimal prime (completely prime, resp.) divisor of B provided;

(1) B ⊂ M ;

(2) if C is a prime (completely prime, resp.) ideal in R such that B $ C ⊂ M ,
then C = M .

Theorem 27. If B is a proper ideal in an A-semiring R, then there exists a
minimal prime divisor of B. Moreover, if P is a prime ideal in R such that B ⊂ P ,
then there exists a minimal prime divisor M of B such that B ⊂ M ⊂ P .

Proof. Since B is a proper ideal in an A-semiring R, it follows that there exists
a prime ideal in R containing B. Pick any such ideal and call it P . Let F =
{C ⊂ P |B ⊂ C and C is a prime ideal in R}. Define the relation ≤ on F by
C1 ≤ C2 ⇔ C2 ⊂ C1. F is a partially ordered set under the relation ≤. Let
{Ci}i∈I be a non-empty chain in F . Clearly, ∩i∈ICi is an ideal in R. It is clear
that B ⊂ ∩i∈ICi ⊂ P . It will follow that ∩i∈ICi is an element in F if it can be
shown that ∩i∈ICi is prime. Let a, b ∈ R such that ab ∈ ∩i∈ICi. Clearly, ab ∈ Ci

for any i ∈ I. Suppose that there exists an i0 ∈ I such that a 6∈ Ci0 . Since Ci0

is prime, it is clear that b ∈ Ci0 . Let Ci ∈ {Ci}i∈I . If Ci ⊂ Ci0 , then b ∈ Ci;
otherwise, Ci prime implies a ∈ Ci ⊂ Ci0 , a contradiction. If Ci0 ⊂ Ci, it is clear
that b ∈ Ci. Since {Ci}i∈I is a chain in F , it follows that b ∈ Ci for any i ∈ I, i.e.,
b ∈ ∩i∈ICi. Consequently, ∩i∈ICi is prime. Therefore ∩i∈ICi ∈ F and ∩i∈ICi is
an upper bound of the chain {Ci}i∈I . Zorn’s lemma implies that F has a maximal
element. Pick one such element and call it M . Let D be a prime ideal in R such
that B $ D ⊂ M . Clearly, D ∈ F and M ≤ D. Since M is maximal in F , it follows
that D = M . Therefore, M is a minimal prime divisor of B. ¤

Theorem 28. If B is a proper ideal in an A-semiring R, then the radical of B is
the intersection of all minimal prime divisors of B.

Proof. Let {Bi}i∈I denote the collection of all prime ideals in R containing B.
Let I∗ = {i ∈ I |Bi is a minimal prime divisor of B}. It must be shown that√

B = ∩i∈I∗Bi. Let x ∈ √
B. Definition 18 implies x ∈ ∩i∈IBi. Thus, x ∈ Bi

for any i ∈ I and it follows that x ∈ Bi for any i ∈ I∗. Therefore, x ∈ ∩i∈I∗Bi.
Conversely, assume ∩i∈I∗Bi *

√
B. Then there exists an x ∈ ∩i∈I∗Bi such that

x 6∈ √
B. Hence there exists a prime ideal Bi0 in R such that x 6∈ Bi0 . Since

B ⊂ Bi0 and Bi0 is prime, by Theorem 27, there exists a minimal prime divisor
Bj ∈ {Bi}i∈I∗ such that B ⊂ Bj ⊂ Bi0 . However, Bj ∈ {Bi}i∈I∗ and x ∈ ∩i∈I∗Bi

implies that x ∈ Bj ⊂ Bi0 , a contradiction. ¤
Iséki ([10]) developed the Thierrin radical of an ideal in an arbitrary semiring

as follows:

Definition 29. Let B be an ideal in a semiring R. An element x in R will be called
a T -element for B if x = x1x2 · · ·xn such that x2

1x
2
2 · · ·x2

n ∈ B for some xi ∈ R and
for some positive integer n.
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The set of all T -elements for the ideal B will be denoted by T 1(B). The ideal
generated by T 1(B) will be denoted by T1(B). If m > 1, then Tm(B) is defined
recursively as follows: Tm(B) = T1(Tm−1(B)). It is clear that Tm(B) ⊂ Tm+1(B)
for each positive integer m.

Definition 30. If B is an ideal in a semiring R, then the Thierrin radical of B is
denoted by T ∗(B) and defined by T ∗(B) = ∪∞m=1Tm(B).

Iséki proved the following characterization of the Thierrin radical.

Theorem 31. If B is an ideal in a semiring R, the Thierrin radical of B is the
intersection of all minimal completely prime divisors of B.

The following theorem will show that the radical of a proper ideal in an A-
semiring is a specialization of the Thierrin radical.

Theorem 32. If B is a proper ideal in an A-semiring R, then
√

B = T ∗(B).

Proof. Theorem 5 implies that the notion of prime ideal and completely prime ideal
are equivalent in a commutative semiring. Thus, the collection of all minimal prime
divisors of B is identical to the collection of all minimal completely prime divisors
of B. The theorem follows from Theorem 28 and Theorem 31. ¤

The remainder of this paper will be devoted to the development of further prop-
erties of ideals in commutative semirings.

Theorem 33. Let R be a semiring with commutative addition and let P1, P2, · · · , Pn

be prime, k-ideals in R. If A is an ideal in R such that A 6⊂ Pi, i = 1, 2, · · · , n,
then there exists a ∈ A such that a 6∈ Pi, i = 1, 2, · · · , n.

Proof. Without loss of generality, it may be assumed that there is no inclusion
among the Pi. Assume that there exists i0 ∈ {1, 2, · · · , n} such that

P1P2 · · ·Pi0−1Pi0+1 · · ·PnA ⊂ Pi0 .

Pick pj ∈ Pj such that pj 6∈ Pi0 for any j 6= i0, and pick x ∈ A such that x 6∈ Pi0 .
Thus,

ai0 = p1p2 · · · pi0−1pi0+1 · · · pnx ∈ Pi0 .

Since p1 6∈ Pi0 (assuming i0 6= 1) and Pi0 is prime, it follows that p2 · · · pi0−1pi0+1 · · ·
pnx ∈ Pi0 . Repeating this argument a finite number of times implies that
x ∈ Pi0 , a contradiction. Therefore, for each i = 1, 2, · · · , n, there exists
ai ∈ P1P2 · · ·Pi−1Pi+1 · · ·PnA such that ai 6∈ Pi. Choose such an ai, for each
i0 ∈ {1, 2, · · · , n}. Since A is an ideal, it is clear that

∑n
i=1 ai ∈ A. Let a =

∑n
i=1 ai.

Assume there exists j0 ∈ {1, 2, · · · , } such that a ∈ Pj0 . Since Pj0 is an ideal
and ai = p1 · · · pi−1pi+1 · · · pj0 · · · pnx for any i 6= j0, it follows that ai ∈ Pj0

for any i 6= j0. Therefore,
∑

i 6=j0
ai ∈ Pj0 . Consequently, Pj0 is a k-ideal and

[
∑

i 6=j0
ai] + aj0 = a ∈ Pj0 imply aj0 ∈ Pj0 , a contradiction. Hence, there exists an

a ∈ A such that a 6∈ Pi for each i = 1, 2, · · · , n. ¤
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Definition 34. Let P be a proper ideal in a semiring R. If a, b ∈ R, ab ∈ P and
a 6∈ P implies bn ∈ P for some positive integer n, then P is said to be primary.

The following theorem is an immediate consequence of Theorem 23.

Theorem 35. If P is a proper ideal in an A-semiring R, then the following state-
ments are equivalent:

(1) P is primary;

(2) if a, b ∈ R such that a 6∈ P and ab ∈ P , then b ∈ √P ;

(3) if a, b ∈ R such that ab ∈ P and b 6∈ √P , then a ∈ P .

Allen [1] has presented the notion of a Q-ideal I in the semiring R and con-
structed the quotient semiring R/I. The results proven in [1] will be used in the
next results.

Lemma 36. Let R be a semiring with zero and commutative addition, and let P
be a Q-ideal in R. If q ∈ Q and q + P is the zero in R/P , then q + P = P .

Proof. Let ϕ : R → R/P be the natural homomorphism of R onto R/P . It is clear
that ker(ϕ) = {x ∈ R |x + P is a subset of q + P}. If x ∈ ker(ϕ), then

x = x + 0 ∈ x + P ⊂ q + P.

Thus, ker(ϕ) ⊂ q + P . Since q ∈ ker(ϕ) and ker(ϕ) is an ideal, it follows that
q+q ∈ ker(ϕ). Thus, there exists an i ∈ P such that q+q = q+ i. Since 0 ∈ ker(ϕ),
there exists a j ∈ P such that 0 = q+j. Thus, q = q+0 = q+(q+j) = (q+q)+j =
(q + i) + j = (q + j) + i = 0 + i = i. Hence, q ∈ P and it is clear that q + P ⊂ P .
Since 0 ∈ ker(ϕ), it is clear that P = 0 + P ⊂ q + P . Thus, P = q + P . ¤

Theorem 37. Let R be a semiring with zero and commutative addition, and let P
be a proper ideal in R. If P is a Q-ideal, then P is primary if and only if every
zero divisor in R/P is nilpotent.

Proof. Let q be the unique element in Q such that q + P is the zero in R/P . Let P
be primary and let q1 + P and q2 + P be element in R/P such that q1 + P 6= q + P
and (q1 + P ) ¯ (q2 + P ) = q + P . If q1 ∈ P , by Lemma 36, q1 ∈ q + P and
it would follow that q1 ∈ (q1 + P ) ∩ (q + P ), a contradiction. Thus, q1 6∈ P .
(q1 + P ) ¯ (q2 + P ) = q + P implies q1q2 + P ⊂ q + P . Hence, q1q2 ∈ q + P and
Lemma 36 implies q1q2 ∈ P . Since P is primary, there exists an n ∈ Z+ such
that qn

2 ∈ P . Lemma 36 implies qn
2 ∈ q + P . Since q2 ∈ q2 + P , it is clear that

qn
2 ∈ (q2+P )n. Thus, qn

2 ∈ (q2+P )n∩(q+P ), and it follows that (q2+P )n = q+P .
Since P is primary, every zero divisor in R/P is nilpotent.

Conversely, suppose that every zero divisor in R/P is nilpotent. Let a, b ∈ R
such that a 6∈ P and ab ∈ P . Lemma 36 implies a 6∈ q + P and ab ∈ q + P . Since
P is a Q-ideal, a + P ⊂ q1 + P and b + P ⊂ q2 + P for some q1, q2 ∈ Q. Thus,
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a = q1 + i1 and b = q2 + i2 for some i1, i2 ∈ P . Since a ∈ q1 + P and a 6∈ q + P , it
is clear that q1 + P 6= q + P . Clearly,

ab = q1q2 + q1i2 + i1q2 + i1i2 ∈ q1q2 + P.

Let q∗ be the unique element in Q such that q1q2 + P ⊂ q∗ + P . Since ab ∈
(q + P ) ∩ (q∗ + P ), it is clear that q = q∗ and q + P = (q1 + P )¯ (q2 + P ). Since
q2 +P is a zero divisor in R/P , there exists an n ∈ Z+ such that (q2 +P )n = q+P .
Lemma 36 implies (q2 + P )n = P . Since b ∈ q2 + P , it is clear that bn ∈ (q2 + P )n.
Thus, bn ∈ P , and it follows that P is primary. ¤

Theorem 38. If P is a primary ideal in an A-semiring R, then
√

P is prime.

Proof. Let a, b ∈ R such that a 6∈ √P and ab ∈ √P . Since ab ∈ √P , by Theorem
23, there exists an n ∈ Z+ such that (ab)n ∈ P . Since R is commutative, it follows
that anbn ∈ P . Since a 6∈ √P , by Theorem 23, an 6∈ P . Since P is primary, an 6∈ P
and anbn ∈ P . By Theorem 35, we have bn ∈ √P . Thus, there exists an m ∈ Z+

such that (bn)m ∈ P . Clearly, p = nm ∈ Z+ and bp = (bn)m ∈ P . Therefore,
b ∈ √P and it follows that

√
P is prime. ¤

The following is an immediate consequence of Theorem 38.

Corollary 39. If P is a primary ideal in an A-semiring R, then
√

P is the unique
minimal prime divisor of P .

If P is a primary ideal in an A-semiring R, Theorem 38 implies that
√

P is
prime. From this result a natural question arises. What conditions on the semiring
R and

√
P will be sufficient to imply that P is primary? The following theorem

will answer this question.

Theorem 40. Let R be a commutative semiring with an identity 1, and let P be a
proper ideal in R. If

√
P is maximal in R, then P is primary.

Proof. Let a, b ∈ R such that ab ∈ P and b 6∈ √P . If it can be shown that a ∈ P ,
by Theorem 35, P is primary. An inspection will show that

√
P ∪Rb ∪ (

√
P + Rb)

is an ideal in R that properly contains
√

P . Since
√

P is maximal in R, it follows
that R =

√
P ∪ Rb ∪ (

√
P + Rb). If 1 ∈ Rb, then 1 = rb for some r ∈ R. Hence,

a = a · 1 = a(rb) = r(ab). Since P is an ideal and ab ∈ P , it is clear that a ∈ P .
Suppose that 1 ∈ Rb +

√
P . Then 1 = p + rb for some p ∈ √P and for some r ∈ R.

Clearly, p ∈ √P implies pn ∈ P for some n ∈ Z+. The binomial theorem implies
the following:

1 = 1n

= (p + rb)n = pn +
(

n

1

)
pn−1(rb)1 +

(
n

2

)
pn−2(rb)2 + · · ·+ (rb)n

= pn +
(

n

1

)
pn−1r1b1 +

(
n

2

)
pn−2r2b2 + · · ·+ rnbn

= pn + [
(

n

1

)
pn−1r +

(
n

2

)
pn−2r2b + · · ·+ rnbn−1]b.
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Thus, 1 = p′ + r′b where p′ = pn ∈ P and

r′ =
(

n

1

)
pn−1r +

(
n

2

)
pn−2r2b + · · ·+ rnbn−1 ∈ R.

It is clear that a = a · 1 = a(p′ + r′b) = ap′ + r′(ab). Since p′ ∈ P , ab ∈ P and P is
an ideal, it follows that a ∈ P . Therefore, P is primary. ¤

The following theorem will conclude this paper.

Theorem 41. Let P1, P2, · · · , Pn be primary ideals in an A-semiring R. If
√

Pi =
P for each i = 1, 2, · · · , n, then ∩n

i=1Pi is primary and
√∩n

i=1Pi = P .

Proof. Let x ∈ P . Clearly,
√

Pi = P implies xmi ∈ Pi for some mi ∈ Z+ where
i = 1, 2, · · · , n. Let m = max{mi}m

i=1. Thus, xm = xm−mixmi and xmi ∈ Pi

for each i. Since each Pi is an ideal, it follows that xm ∈ Pi for each i. Thus,
xm ∈ ∩n

i=1Pi. Therefore, x ∈ √∩n
i=1Pi.

Conversely, Theorem 25 implies that
√∩n

i=1Pi ⊂
√

Pi = P . Thus,
√∩n

i=1Pi =
P . The following argument will show that ∩n

i=1Pi is primary. Let a, b ∈ R such
that ab ∈ ∩n

i=1Pi and b 6∈ P . Since each Pi is primary, ab ∈ Pi, and b 6∈ P =
√

Pi,
it follows that a ∈ Pi for each i = 1, 2, · · · , n. Thus, a ∈ ∩n

i=1Pi. ¤
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