KYUNGPOOK Math. J. 62(2022), 205-211 https://doi.org/10.5666/KMJ.2022.62.2.205 pISSN 1225-6951 eISSN 0454-8124 © Kyungpook Mathematical Journal

ZPI Property In Amalgamated Duplication Ring

Ahmed Hamed and Achraf Malek*

Department of Mathematics, Faculty of Sciences, Monastir, Tunisia e-mail: hamed.ahmed@hotmail.fr and achraf_malek@yahoo.fr

ABSTRACT. Let A be a commutative ring. We say that A is a ZPI ring if every proper ideal of A is a finite product of prime ideals [5]. In this paper, we study when the amalgamated duplication of A along an ideal $I, A \bowtie I$ to be a ZPI ring. We show that if I is an idempotent ideal of A, then A is a ZPI ring if and only if $A \bowtie I$ is a ZPI ring.

1. Introduction

All rings considered in this paper are commutative and unitary. Let A and B be commutative rings with identity, $f : A \to B$ a ring homomorphism and J an ideal of B. Then the subring $A \bowtie^f J$ of $A \times B$ is defined as follows:

 $A \bowtie^f J = \{(a, f(a) + j) \mid a \in A \text{ and } j \in J\}.$

We call the ring $A \bowtie^f J$ the amalgamation of A with B along J with respect to f. This construction was introduced and studied by D'Anna, Finacchiaro and Fontana [1, 2]. The study of the amalgamation ring widespread and can improve early studies on classical constructions like A + XB[X], A + XB[[X]] and D + Mwhich are in fact, special cases of amalgamated algebra rings. However, we will be mostly interested in the amalgamated duplication ring which is a particular case of the amalgamated algebra ring. Let A be a commutative ring and I an ideal of A. The following ring construction called the amalgamated duplication of A along Iwas introduced by D'Anna in [3]. It is the subring $A \bowtie I$ of $A \times A$ consisting of all pairs $(x, y) \in A \times A$ with $x - y \in I$. Motivations and additional applications of the amalgamated duplication are discussed in detail in [3, 4]. Recall that a commutative ring A is called a ZPI ring if every proper ideal of A is a finite product of prime ideals [5, 8, 9].

In this paper we study the ZPI property and we give a necessary and sufficient condition for the amalgamated duplication of A along an ideal $I, A \bowtie I$ to be a ZPI

*Corresponding Author.

Received January 23, 2021; revised September 14, 2021; accepted December 6, 2021. 2020 Mathematics Subject Classification: 13A15, 13F05, 13G05.

205

Key words and phrases: ZPI ring, Amalgamated duplication ring, Dedekind domain.

ring, where I is an idempotent ideal (i.e., $I^2 = I$). We show that if A is a ZPI ring, then A/I is a ZPI ring, and we prove that the reverse is not true in general. Let I be an idempotent ideal of A. We show that A is a ZPI ring if and only if $A \bowtie I$ is a ZPI ring. We end this paper by a sufficient condition for the amalgamated algebra along an ideal to be a ZPI ring. Let A and B be commutative rings with identity, $f: A \to B$ a ring homomorphism and J an idempotent ideal of B. We show that if J is included in the radical of Jacobson of B, then $A \bowtie^f J$ is a ZPI ring if and only if A is a ZPI ring and f(A) + J is Noetherian.

2. Main Results

In this paper we study the ZPI properties on amalgamated duplication of A along an ideal $I, A \bowtie I$. First let us recall the following notions. Let A be a commutative ring and I be an ideal of A. Let $A \bowtie I$ be the subring of $A \times A$ consisting of the elements (a, a + i) for $a \in A$ and $i \in I$. Then the ring $A \bowtie I$ is called the *amalgamated duplication of A along an ideal I*. Recall that a commutative ring A is said to be ZPI if every proper ideal of A is a finite product of prime ideals of A. It was shown in [7, Theorem 9.10] that A is a ZPI ring if and only if A is Noetherian and for all maximal ideal M of A, there is no ideal properly contained between M^2 and M.

Example 2.1. Let $A = \mathbb{Z}[\![X]\!]$. We will show that A is not a ZPI ring. Indeed, let $M = (X, 2)\mathbb{Z}[\![X]\!]$ and $I = (X^2, 2X, 2)\mathbb{Z}[\![X]\!]$. Since $2 \in I \setminus M^2$, then $M^2 \subset I$. Moreover, $I \subset M$, because $X \in M \setminus I$. Thus $M^2 \subset I \subset M$, and hence A is not a ZPI ring.

Lemma 2.2. Let A be a ZPI ring and I an ideal of A. Then A/I is a ZPI ring.

Proof. Let J be an ideal of A/I. Then J = B/I is such that B is an ideal of A containing I. Since A is a ZPI ring, $B = P_1 \cdots P_k$ where P_i is a prime ideal of A for each $1 \le i \le k$. Thus $J = P_1 \cdots P_k/I = P_1/I \cdots P_k/I$ and therefore A/I is a ZPI ring.

The following example proves that the reverse of the previous lemma is not true in general.

Example 2.3. $A = \mathbb{Z}[\![X]\!]$. Then by Example 2.1, A is not a ZPI ring. Let $I = X\mathbb{Z}[\![X]\!]$. Since $A/I \simeq \mathbb{Z}$, then A/I is a ZPI ring.

Let A and B be commutative rings with identity, $f : A \to B$ a ring homomorphism and J an ideal of B. Then the subring $A \bowtie^f J$ of $A \times B$ is defined as follows:

$$A \bowtie^f J = \{(a, f(a) + j) \mid a \in A \text{ and } j \in J\}.$$

We call the ring $A \bowtie^f J$ amalgamation of A with B along J with respect to f. Let p_A and p_B be the restrictions to $A \bowtie^f J$ of $A \times B$ onto A and B, respectively. Let

 $\pi: B \to B/J$ be the canonical projection and $\hat{f} = \pi \circ f$. Then $A \bowtie^f J$ is the pullback $\hat{f} \times_{B/J} \pi$ of \hat{f} and π :

$$A \bowtie^{f} J = \widehat{f} \times_{B/J} \pi \xrightarrow{p_{A}} A$$
$$\begin{array}{c} p_{B} \downarrow & & & \\ p_{B} \downarrow & & & & \\ B & \xrightarrow{\pi} & B/J. \end{array}$$

Proposition 2.4. Let A and B be commutative rings with identity, $f : A \to B$ a ring homomorphism and J an ideal of B. If $A \bowtie^f J$ is a ZPI ring, then A and f(A) + J are ZPI rings.

Proof. By [2, Proposition 5.1] $\frac{A \bowtie^f J}{(0,J)} \simeq A$ and $\frac{A \bowtie^f J}{(f^{-1}(J),0)} \simeq f(A) + J$. Then by Lemma 2.2, A and f(A) + J are ZPI rings.

Let P be a prime ideal of A and Q be a prime ideal of B. We note $P'_f = \{(p, f(p) + j), | p \in P \text{ and } j \in J\}$ and $\overline{Q}_f = \{(a, f(a) + j) | a \in A, j \in J \text{ and } f(a) + j \in Q\}$. According to [1, Proposition 2.6], the set of maximal ideals of $A \bowtie^f J$ is $\operatorname{Max}(A \bowtie^f J) = \{P'_f | P \in \operatorname{Max}(A)\} \cup \{\overline{Q}_f | Q \in \operatorname{Max}(B) \setminus V(J)\}$, where $V(J) = \{Q \in \operatorname{Spec}(B) | J \subseteq Q\}$. Note that when A = B, $f = id_A$ and J = I, then we obtain $A \bowtie^f J = A \bowtie I$ the amalgamated duplication of A along an ideal I.

Remark 2.5. Let *I* be an ideal of a commutative ring *A*. Then the maximal ideals of $A \bowtie I$ are:

- 1. $N \bowtie I$, where N is a maximal ideal of A.
- 2. $\{(q+i,q) \mid q \in Q, i \in I \text{ and } I \not\subseteq Q\}$, where Q is a maximal ideal of A.

Proof. Let M be a maximal ideal of $A \bowtie I$. Then $M = N \bowtie I$ where N is a maximal ideal of A or $M = \{(a, a + i), \text{ with } a \in A, i \in I \text{ and } a + i \in Q\}$ for some maximal ideal Q of A such that $I \nsubseteq Q$. Since $a + i \in Q$, there exists $q \in Q$ such that a = q - i. Thus $M = \{(q - i, q) \mid i \in I \text{ and } q \in Q\}$. This implies that $M = \{(q + i, q) \mid q \in Q, i \in I \text{ and } I \nsubseteq Q\}$.

Recall that an ideal I of a commutative ring A is said to be *idempotent* if $I^2 = I$.

Theorem 2.6. Let I be an idempotent ideal of A. Then the following assertions are equivalent:

- 1. A is a ZPI ring.
- 2. $A \bowtie I$ is a ZPI ring.

Proof. $(2) \Rightarrow (1)$. Follows from Proposition 2.4.

 $(1) \Rightarrow (2)$. Let M be a maximal ideal of $A \bowtie I$. Suppose that there exists an ideal J of $A \bowtie I$ such that $M^2 \subseteq J \subseteq M$. By Remark 2.5, $M = N \bowtie I$ for some maximal ideal N of A or $M = \{(q+i,q) \mid q \in Q, i \in I\}$ for some maximal ideal Q of A such that $I \not\subseteq Q$.

First case: $M = N \bowtie I$, where N is a maximal ideal of A. Claim $(0, I) \subseteq J$. Proof of claim Let $(0, q) \in (0, I)$. Since L is an idempotent ideal of A.

Proof of claim. Let $(0, a) \in (0, I)$. Since I is an idempotent ideal of A, there exist $\alpha_1, ..., \alpha_n, \beta_1, ..., \beta_n \in I$ such that $a = \alpha_1 \beta_1 + \cdots + \alpha_n \beta_n$. Thus

$$(0, a) = (0, \alpha_1)(0, \beta_1) + \dots + (0, \alpha_n)(0, \beta_n) \in (N \bowtie I)^2 \subseteq J.$$

Now, since $M^2 \subseteq J \subseteq M$, then $N^2 \subseteq P_A(J) \subseteq N$. This implies that $P_A(J) = N^2$ or $P_A(J) = N$, because A is a ZPI ring.

- 1. $P_A(J) = N$. We will prove that $J = M = N \bowtie I$. It suffices to show that $N \bowtie I \subseteq J$. Let $(a, a+i) \in N \bowtie I$. Then $a \in P_A(J)$; so there exists $j \in J$ such that $(a, a+j) \in J$. We have (a, a+i) = (a, a+i+j-j) = (a, a+j) + (0, i-j). By claim above, $(0, I) \subseteq J$; so $(a, a+i) \in J$. Thus $J = N \bowtie I$.
- 2. $P_A(J) = N^2$. We will prove that $J = M^2 = (N \bowtie I)^2$. It suffices to show that $J \subseteq (N \bowtie I)^2$. Let $(a, a+i) \in J$. Then $a \in N^2$; so $a = \alpha_1 \beta_1 + \cdots + \alpha_n \beta_n$ for some $\alpha_1, \dots, \alpha_n, \beta_1, \dots, \beta_n \in N$. Thus

$$(a, a+i) = (\alpha_1, \alpha_1)(\beta_1, \beta_1) + \dots + (\alpha_n, \alpha_n)(\beta_n, \beta_n) + (0, i).$$

Since $(0, I) \subseteq (N \bowtie I)^2$, then $(a, a + i) \in (N \bowtie I)^2$. This implies that $J \subseteq (N \bowtie I)^2$. Hence $J = (N \bowtie I)^2$.

Second case: $M = \{(q+i,q) \mid q \in Q, i \in I\}$ for some maximal ideal Q of A such that $I \not\subseteq Q$.

Claim $(I, 0) \subseteq M^2 \subseteq J$. Proof of claim. Let $(a, 0) \in (I, 0)$. Since I is an idempotent ideal, $(a, 0) = (\alpha_1, 0)(\beta_1, 0) + \dots + (\alpha_n, 0)(\beta_n, 0)$ for some $\alpha_k, \beta_k \in I$. As for all $1 \leq k \leq n, (\alpha_k, 0) \in M$, then $(a, 0) \in M^2$. This implies that $(I, 0) \subseteq M \subseteq J$.

We set the projection: $H \xrightarrow{\cdot} A \bowtie I \xrightarrow{\cdot} A$

Now, we have $Q^2 = H(M^2) \subseteq H(J) \subseteq H(M) = Q$. Since A is a ZPI ring, then H(J) = Q or $H(J) = Q^2$.

1. H(J) = Q. We will show that M = J. Let (q+i, q) be an element of M. Since $q \in Q = H(J)$, there exist $a \in A$, $i' \in I$ such that q = a+i' with $(a, a+i') \in J$. By the claim above $(q+i, q) = (a+i+i', a+i') = (a, a+i') + (i+i', 0) \in J$. Hence M = J.

208

2. If $H(J) = Q^2$. We show that $J = M^2$. Let $(a, a + i) \in J$. Then $a + i \in Q^2$ which implies that $a + i = \alpha_1 \beta_1 + \cdots + \alpha_n \beta_n$ for some $\alpha_1, \dots, \alpha_n, \beta_1, \dots, \beta_n \in Q$. We have

$$(a, a+i) = (\alpha_1\beta_1 + \dots + \alpha_n\beta_n - i, \alpha_1\beta_1 + \dots + \alpha_n\beta_n)$$

= $(\alpha_1\beta_1, \alpha_1\beta_1) + \dots + (\alpha_n\beta_n, \alpha_n\beta_n) + (-i, 0)$
= $(\alpha_1, \alpha_1)(\beta_1, \beta_1) + \dots + (\alpha_n, \alpha_n)(\beta_n, \beta_n) + (-i, 0).$

For all $1 \leq k \leq n$, $(\alpha_k, \alpha_k)(\beta_k, \beta_k) \in M^2$, then the claim above $(I, 0) \subseteq M^2$. This implies that $(a, a + i) \in M^2$, and $M^2 = J$. Hence $A \bowtie I$ is a ZPI ring.

Question 2.7. Is the property *I* idempotent in Theorem 2.6 is necessary?

Recall that an integral domain is said to be a *Dedekind domain* if every proper ideal of A is a finite product of prime ideals. Note that $A \bowtie I$ is an integral domain if and only if A is an integral domain and I = (0).

Corollary 2.8. Let A be an integral domain. Then the following assertions are equivalent:

- 1. A is a Dedekind domain.
- 2. $A \bowtie 0 = \{(a, a) \mid a \in A\}$ is a Dedekind domain.

Proof. (1) \Rightarrow (2) Let I = (0). Then I is an idempotent ideal of A. Since A is a ZPI ring, then by Theorem 2.6, $A \bowtie I$ is a ZPI ring. Moreover, A is an integral domain and I = (0), then $A \bowtie I$ is an integral domain. Hence $A \bowtie I$ is a Dedekind domain.

 $(2) \Rightarrow (1)$ Since $A \bowtie 0$ is a ZPI ring, then by Theorem 2.6, A is a ZPI ring. As $A \bowtie 0$ is an integral domain, then A is an integral domain. Hence A is a Dedekind domain.

Proposition 2.9. Let A and B be commutative rings with identity, $f : A \to B$ a ring homomorphism and J an ideal of B. If J is included in the radical of Jacobson of B, then $Max(A \bowtie^f J) = \{P'_f \mid P \in Max(A)\}.$

Proof. Since
$$J \subseteq \bigcap_{Q \in Max(B)} Q$$
, then for all $Q \in Max(B), J \subseteq Q$; so $\{\overline{Q}_f, Q \in Max(B) \setminus V(J)\} = \emptyset$.

Let A and B be commutative rings with identity, $f : A \to B$ a ring homomorphism and J an ideal of B. According to [6, Proposition 3.2], $A \bowtie^f J$ is a Noetherian ring if and only if A and f(A) + J are Noetherian.

Proposition 2.10. Let A and B be commutative rings with identity, $f : A \rightarrow B$ a ring homomorphism and J an idempotent ideal of B. Assume that J is included in the radical of Jacobson of B. Then the following assertions are equivalent:

- 1. $A \bowtie^f J$ is a ZPI ring.
- 2. A is a ZPI ring and f(A) + J is a Noetherian ring.

Proof. $(1) \Rightarrow (2)$ Follows from Proposition 2.4.

 $(2) \Leftarrow (1)$ Since A and f(A) + J are Noetherian, then $A \bowtie^f J$ is Noetherian. It suffices to prove that for all maximal ideal M of $A \bowtie^f J$ there is no ideal properly contained between M and M^2 . Assume that there exists an ideal I of $A \bowtie^f J$ such that $M^2 \subseteq I \subseteq M$, for some maximal ideal M of $A \bowtie^f J$. Since J is included in the radical of Jacobson of B, then by Proposition 2.9, $\operatorname{Max}(A \bowtie^f J) = \{P'_f \mid P \in$ $\operatorname{Max}(A)\}$; so $M = P \bowtie^f J$, for some maximal ideal P of A. We will show that $(0, J) \subseteq I$. Let $(0, a) \in (0, J)$. Since J is an idempotent ideal of B, there exist $\alpha_1, \dots, \alpha_n, \beta_1, \dots, \beta_n \in J$ such that $a = \alpha_1 \beta_1 + \dots + \alpha_n \beta_n$. Thus

$$(0,a) = (0,\alpha_1)(0,\beta_1) + \dots + (0,\alpha_n)(0,\beta_n) \in (P \bowtie^f J)^2 \subseteq I.$$

Now, since $M^2 \subseteq I \subseteq M$, then $P^2 \subseteq P_A(I) \subseteq P$. This implies that $P_A(I) = P^2$ or $P_A(I) = P$, because A is a ZPI ring.

First case: $P_A(I) = P$. We will prove that $I = M = P \bowtie^f J$. It suffices to show that $P \bowtie^f J \subseteq I$. Let $(a, f(a) + j) \in P \bowtie^f J$. Then $a \in P_A(I)$; so there exists an $i \in J$ such that $(a, f(a) + i) \in I$. We have (a, f(a) + j) = (a, f(a) + j + i - i) = (a, f(a) + i) + (0, j - i). Since $(0, J) \subseteq I$, $(a, f(a) + j) \in I$. Thus $I = P \bowtie^f J$.

Second case: $P_A(I) = P^2$. We will prove that $I = M^2 = (P \bowtie^f J)^2$. It suffices to show that $I \subseteq (P \bowtie^f J)^2$. Let $(a, f(a) + j) \in I$. Then $a \in P^2$; so $a = \alpha_1 \beta_1 + \cdots + \alpha_n \beta_n$ for some $\alpha_1, \ldots, \alpha_n, \beta_1, \ldots, \beta_n \in P$. Thus

$$(a, f(a) + j) = (\alpha_1, f(\alpha_1))(\beta_1, f(\beta_1)) + \dots + (\alpha_n, f(\alpha_n))(\beta_n, f(\beta_n)) + (0, j).$$

Since $(0, J) \subseteq (P \bowtie^f J)^2$, then $(a, f(a) + j) \in (P \bowtie^f J)^2$. This implies that $I \subseteq (P \bowtie^f J)^2$. Hence $I = (P \bowtie^f J)^2$.

Let A be a commutative ring. We denote by $\Gamma(A) := \{(a, f(a)) \mid a \in A\}$ the Graph of A.

Example 2.11. Let A and B be commutative rings with identity, $f : A \to B$ a ring homomorphism and J = (0). It is easy to see that J is an idempotent ideal of B included in the radical of Jacobson of B. By Proposition 2.10, $\Gamma(A)$ is a ZPI ring if and only if A is a ZPI ring and f(A) is Noetherian.

Acknowledgments. The authors would like to thank the referee for his/her insightful suggestions towards the improvement of the paper.

References

 M. D'Anna, C. A. Finocchiaro and M. Fantana, Properties of chains of prime ideal of amalgamated algebra along an ideal, J. Pure Appl. Algebra, 214(9)(2010), 1633–1641.

210

- [2] M. D'Anna, C. A. Finocchiaro and M. Fantana, Amalgamated algebra along an ideal, Commutative algebra and its applications, 155–172.
- [3] M. D'Anna, A construction of Gorenstein rings, J. Algebra, 306(2)(2006), 507-519.
- M. D'Anna and M. Fontana, The amalgamated duplication of ring along an ideal: the basic properties, J. Algebra Appl., 6(2007), 241–252.
- [5] H. S. Butts and R. Gilmer, *Primary ideals and prime power ideals*, Canadian J. Math., 18(1966), 1183–1195.
- [6] A. Hamed and S. Hizem, S-Noetherian rings of the forms A[X] and A[[X]], Comm. Algebra, 43(9)(2015), 3848–3856.
- [7] M. Larsen, and P. McCarthy, *Multiplicative theory of ideals*, Pure and Applied Mathematics, Academic Press, New York(1971).
- [8] K. B. Levitz, A Charecterization of General Z.P.I-Rings, Proc. Amer. Math. Soc., 32(2)(1972), 376–380.
- [9] C. A. Wood, On General Z.P.I-Rings, Pacific J. Math., 30(3)(1969), 837-846.