ZPI Property In Amalgamated Duplication Ring

Ahmed Hamed and Achraf Malek*
Department of Mathematics, Faculty of Sciences, Monastir, Tunisia
e-mail: hamed.ahmed@hotmail.fr and achraf_malek@yahoo.fr

Abstract. Let A be a commutative ring. We say that A is a ZPI ring if every proper ideal of A is a finite product of prime ideals [5]. In this paper, we study when the amalgamated duplication of A along an ideal $I, A \bowtie I$ to be a ZPI ring. We show that if I is an idempotent ideal of A, then A is a ZPI ring if and only if $A \bowtie I$ is a ZPI ring.

1. Introduction

All rings considered in this paper are commutative and unitary. Let A and B be commutative rings with identity, $f: A \rightarrow B$ a ring homomorphism and J an ideal of B. Then the subring $A \bowtie^{f} J$ of $A \times B$ is defined as follows:

$$
A \bowtie^{f} J=\{(a, f(a)+j) \mid a \in A \text { and } j \in J\} .
$$

We call the ring $A \bowtie^{f} J$ the amalgamation of A with B along J with respect to f. This construction was introduced and studied by D'Anna, Finacchiaro and Fontana $[1,2]$. The study of the amalgamation ring widespread and can improve early studies on classical constructions like $A+X B[X], A+X B[[X]]$ and $D+M$ which are in fact, special cases of amalgamated algebra rings. However, we will be mostly interested in the amalgamated duplication ring which is a particular case of the amalgamated algebra ring. Let A be a commutative ring and I an ideal of A. The following ring construction called the amalgamated duplication of A along I was introduced by D'Anna in [3]. It is the subring $A \bowtie I$ of $A \times A$ consisting of all pairs $(x, y) \in A \times A$ with $x-y \in I$. Motivations and additional applications of the amalgamated duplication are discussed in detail in [3, 4]. Recall that a commutative ring A is called a $Z P I$ ring if every proper ideal of A is a finite product of prime ideals $[5,8,9]$.

In this paper we study the ZPI property and we give a necessary and sufficient condition for the amalgamated duplication of A along an ideal $I, A \bowtie I$ to be a ZPI

[^0]ring, where I is an idempotent ideal (i.e., $I^{2}=I$). We show that if A is a ZPI ring, then A / I is a ZPI ring, and we prove that the reverse is not true in general. Let I be an idempotent ideal of A. We show that A is a ZPI ring if and only if $A \bowtie I$ is a ZPI ring. We end this paper by a sufficient condition for the amalgamated algebra along an ideal to be a ZPI ring. Let A and B be commutative rings with identity, $f: A \rightarrow B$ a ring homomorphism and J an idempotent ideal of B. We show that if J is included in the radical of Jacobson of B, then $A \bowtie^{f} J$ is a ZPI ring if and only if A is a ZPI ring and $f(A)+J$ is Noetherian.

2. Main Results

In this paper we study the ZPI properties on amalgamated duplication of A along an ideal $I, A \bowtie I$. First let us recall the following notions. Let A be a commutative ring and I be an ideal of A. Let $A \bowtie I$ be the subring of $A \times A$ consisting of the elements $(a, a+i)$ for $a \in A$ and $i \in I$. Then the ring $A \bowtie I$ is called the amalgamated duplication of A along an ideal I. Recall that a commutative ring A is said to be $Z P I$ if every proper ideal of A is a finite product of prime ideals of A. It was shown in [7, Theorem 9.10] that A is a ZPI ring if and only if A is Noetherian and for all maximal ideal M of A, there is no ideal properly contained between M^{2} and M.

Example 2.1. Let $A=\mathbb{Z} \llbracket X \rrbracket$. We will show that A is not a ZPI ring. Indeed, let $M=(X, 2) \mathbb{Z} \llbracket X \rrbracket$ and $I=\left(X^{2}, 2 X, 2\right) \mathbb{Z} \llbracket X \rrbracket$. Since $2 \in I \backslash M^{2}$, then $M^{2} \subset I$. Moreover, $I \subset M$, because $X \in M \backslash I$. Thus $M^{2} \subset I \subset M$, and hence A is not a ZPI ring.

Lemma 2.2. Let A be a ZPI ring and I an ideal of A. Then A / I is a ZPI ring.
Proof. Let J be an ideal of A / I. Then $J=B / I$ is such that B is an ideal of A containing I. Since A is a ZPI ring, $B=P_{1} \cdots P_{k}$ where P_{i} is a prime ideal of A for each $1 \leq i \leq k$. Thus $J=P_{1} \cdots P_{k} / I=P_{1} / I \cdots P_{k} / I$ and therefore A / I is a ZPI ring.

The following example proves that the reverse of the previous lemma is not true in general.
Example 2.3. $A=\mathbb{Z} \llbracket X \rrbracket$. Then by Example 2.1, A is not a ZPI ring. Let $I=X \mathbb{Z} \llbracket X \rrbracket$. Since $A / I \simeq \mathbb{Z}$, then A / I is a ZPI ring.

Let A and B be commutative rings with identity, $f: A \rightarrow B$ a ring homomorphism and J an ideal of B. Then the subring $A \bowtie^{f} J$ of $A \times B$ is defined as follows:

$$
A \bowtie^{f} J=\{(a, f(a)+j) \mid a \in A \text { and } j \in J\} .
$$

We call the ring $A \bowtie^{f} J$ amalgamation of A with B along J with respect to f. Let p_{A} and p_{B} be the restrictions to $A \bowtie^{f} J$ of $A \times B$ onto A and B, respectively. Let
$\pi: B \rightarrow B / J$ be the canonical projection and $\widehat{f}=\pi \circ f$. Then $A \bowtie^{f} J$ is the pullback $\widehat{f} \times_{B / J} \pi$ of \widehat{f} and π :

Proposition 2.4. Let A and B be commutative rings with identity, $f: A \rightarrow B$ a ring homomorphism and J an ideal of B. If $A \bowtie^{f} J$ is a ZPI ring, then A and $f(A)+J$ are ZPI rings.
Proof. By [2, Proposition 5.1] $\frac{A \bowtie^{f} J}{(0, J)} \simeq A$ and $\frac{A \bowtie^{f} J}{\left(f^{-1}(J), 0\right)} \simeq f(A)+J$. Then by Lemma 2.2, A and $f(A)+J$ are ZPI rings.

Let P be a prime ideal of A and Q be a prime ideal of B. We note $P_{f}^{\prime}=$ $\{(p, f(p)+j), \mid p \in P$ and $j \in J\}$ and $\bar{Q}_{f}=\{(a, f(a)+j) \mid a \in A, j \in J$ and $f(a)+j \in Q\}$. According to [1, Proposition 2.6], the set of maximal ideals of $A \bowtie^{f} J$ is $\operatorname{Max}\left(A \bowtie^{f} J\right)=\left\{P_{f}^{\prime} \mid P \in \operatorname{Max}(\mathrm{~A})\right\} \cup\left\{\bar{Q}_{f} \mid Q \in \operatorname{Max}(\mathrm{~B}) \backslash V(J)\right\}$, where $V(J)=\{Q \in \operatorname{Spec}(B) \mid J \subseteq Q\}$. Note that when $A=B, f=i d_{A}$ and $J=I$, then we obtain $A \bowtie^{f} J=A \bowtie I$ the amalgamated duplication of A along an ideal I.

Remark 2.5. Let I be an ideal of a commutative ring A. Then the maximal ideals of $A \bowtie I$ are:

1. $N \bowtie I$, where N is a maximal ideal of A.
2. $\{(q+i, q) \mid q \in Q, i \in I$ and $I \nsubseteq Q\}$, where Q is a maximal ideal of A.

Proof. Let M be a maximal ideal of $A \bowtie I$. Then $M=N \bowtie I$ where N is a maximal ideal of A or $M=\{(a, a+i)$, with $a \in A, i \in I$ and $a+i \in Q\}$ for some maximal ideal Q of A such that $I \nsubseteq Q$. Since $a+i \in Q$, there exists $q \in Q$ such that $a=q-i$. Thus $M=\{(q-i, q) \mid i \in I$ and $q \in Q\}$. This implies that $M=\{(q+i, q)$ $\mid q \in Q, i \in I$ and $I \nsubseteq Q\}$.

Recall that an ideal I of a commutative ring A is said to be idempotent if $I^{2}=I$.

Theorem 2.6. Let I be an idempotent ideal of A. Then the following assertions are equivalent:

1. A is a ZPI ring.
2. $A \bowtie I$ is a $Z P I$ ring.

Proof. (2) \Rightarrow (1). Follows from Proposition 2.4.
$(1) \Rightarrow(2)$. Let M be a maximal ideal of $A \bowtie I$. Suppose that there exists an ideal J of $A \bowtie I$ such that $M^{2} \subseteq J \subseteq M$. By Remark $2.5, M=N \bowtie I$ for some maximal ideal N of A or $M=\{(q+i, q) \mid q \in Q, i \in I\}$ for some maximal ideal Q of A such that $I \nsubseteq Q$.

First case: $M=N \bowtie I$, where N is a maximal ideal of A.
Claim $(0, I) \subseteq J$.
Proof of claim. Let $(0, a) \in(0, I)$. Since I is an idempotent ideal of A, there exist $\alpha_{1}, \ldots \alpha_{n}, \beta_{1}, \ldots, \beta_{n} \in I$ such that $a=\alpha_{1} \beta_{1}+\cdots+\alpha_{n} \beta_{n}$. Thus

$$
(0, a)=\left(0, \alpha_{1}\right)\left(0, \beta_{1}\right)+\cdots+\left(0, \alpha_{n}\right)\left(0, \beta_{n}\right) \in(N \bowtie I)^{2} \subseteq J
$$

Now, since $M^{2} \subseteq J \subseteq M$, then $N^{2} \subseteq P_{A}(J) \subseteq N$. This implies that $P_{A}(J)=N^{2}$ or $P_{A}(J)=N$, because A is a $Z P I$ ring.

1. $P_{A}(J)=N$. We will prove that $J=M=N \bowtie I$. It suffices to show that $N \bowtie I \subseteq J$. Let $(a, a+i) \in N \bowtie I$. Then $a \in P_{A}(J)$; so there exists $j \in J$ such that $(a, a+j) \in J$. We have $(a, a+i)=(a, a+i+j-j)=(a, a+j)+(0, i-j)$. By claim above, $(0, I) \subseteq J$; so $(a, a+i) \in J$. Thus $J=N \bowtie I$.
2. $P_{A}(J)=N^{2}$. We will prove that $J=M^{2}=(N \bowtie I)^{2}$. It suffices to show that $J \subseteq(N \bowtie I)^{2}$. Let $(a, a+i) \in J$. Then $a \in N^{2}$; so $a=\alpha_{1} \beta_{1}+\cdots+\alpha_{n} \beta_{n}$ for some $\alpha_{1}, \ldots \alpha_{n}, \beta_{1}, \ldots, \beta_{n} \in N$. Thus

$$
(a, a+i)=\left(\alpha_{1}, \alpha_{1}\right)\left(\beta_{1}, \beta_{1}\right)+\cdots+\left(\alpha_{n}, \alpha_{n}\right)\left(\beta_{n}, \beta_{n}\right)+(0, i) .
$$

Since $(0, I) \subseteq(N \bowtie I)^{2}$, then $(a, a+i) \in(N \bowtie I)^{2}$. This implies that $J \subseteq(N \bowtie I)^{2}$. Hence $J=(N \bowtie I)^{2}$.

Second case: $M=\{(q+i, q) \mid q \in Q, i \in I\}$ for some maximal ideal Q of A such that $I \nsubseteq Q$.
Claim $(I, 0) \subseteq M^{2} \subseteq J$.
Proof of claim. Let $(a, 0) \in(I, 0)$. Since I is an idempotent ideal, $(a, 0)=$ $\left(\alpha_{1}, 0\right)\left(\beta_{1}, 0\right)+\cdots+\left(\alpha_{n}, 0\right)\left(\beta_{n}, 0\right)$ for some $\alpha_{k}, \beta_{k} \in I$. As for all $1 \leq k \leq n,\left(\alpha_{k}, 0\right) \in$ M, then $(a, 0) \in M^{2}$. This implies that $(I, 0) \subseteq M \subseteq J$.

We set the projection:

$$
\begin{array}{cccc}
H: & A \bowtie I & \rightarrow & A \\
& (a, a+i) & \mapsto & a+i .
\end{array}
$$

Now, we have $Q^{2}=H\left(M^{2}\right) \subseteq H(J) \subseteq H(M)=Q$. Since A is a ZPI ring, then $H(J)=Q$ or $H(J)=Q^{2}$.

1. $H(J)=Q$. We will show that $M=J$. Let $(q+i, q)$ be an element of M. Since $\mathrm{q} \in Q=H(J)$, there exist $a \in A, i^{\prime} \in I$ such that $q=a+i^{\prime}$ with $\left(a, a+i^{\prime}\right) \in J$. By the claim above $(q+i, q)=\left(a+i+i^{\prime}, a+i^{\prime}\right)=\left(a, a+i^{\prime}\right)+\left(i+i^{\prime}, 0\right) \in J$. Hence $M=J$.
2. If $H(J)=Q^{2}$. We show that $J=M^{2}$. Let $(a, a+i) \in J$. Then $a+i \in Q^{2}$ which implies that $a+i=\alpha_{1} \beta_{1}+\cdots+\alpha_{n} \beta_{n}$ for some $\alpha_{1}, \ldots \alpha_{n}, \beta_{1}, \ldots, \beta_{n} \in Q$. We have

$$
\begin{aligned}
(a, a+i) & =\left(\alpha_{1} \beta_{1}+\cdots+\alpha_{n} \beta_{n}-i, \alpha_{1} \beta_{1}+\cdots+\alpha_{n} \beta_{n}\right) \\
& =\left(\alpha_{1} \beta_{1}, \alpha_{1} \beta_{1}\right)+\cdots+\left(\alpha_{n} \beta_{n}, \alpha_{n} \beta_{n}\right)+(-i, 0) \\
& =\left(\alpha_{1}, \alpha_{1}\right)\left(\beta_{1}, \beta_{1}\right)+\cdots+\left(\alpha_{n}, \alpha_{n}\right)\left(\beta_{n}, \beta_{n}\right)+(-i, 0) .
\end{aligned}
$$

For all $1 \leq k \leq n,\left(\alpha_{k}, \alpha_{k}\right)\left(\beta_{k}, \beta_{k}\right) \in M^{2}$, then the claim above $(I, 0) \subseteq M^{2}$. This implies that $(a, a+i) \in M^{2}$, and $M^{2}=J$.
Hence $A \bowtie I$ is a ZPI ring.
Question 2.7. Is the property I idempotent in Theorem 2.6 is necessary?

Recall that an integral domain is said to be a Dedekind domain if every proper ideal of A is a finite product of prime ideals. Note that $A \bowtie I$ is an integral domain if and only if A is an integral domain and $I=(0)$.

Corollary 2.8. Let A be an integral domain. Then the following assertions are equivalent:

1. A is a Dedekind domain.
2. $A \bowtie 0=\{(a, a) \mid a \in A\}$ is a Dedekind domain.

Proof. (1) $\Rightarrow(2)$ Let $I=(0)$. Then I is an idempotent ideal of A. Since A is a ZPI ring, then by Theorem 2.6, $A \bowtie I$ is a ZPI ring. Moreover, A is an integral domain and $I=(0)$, then $A \bowtie I$ is an integral domain. Hence $A \bowtie I$ is a Dedekind domain.
$(2) \Rightarrow(1)$ Since $A \bowtie 0$ is a ZPI ring, then by Theorem 2.6, A is a ZPI ring. As $A \bowtie 0$ is an integral domain, then A is an integral domain. Hence A is a Dedekind domain.

Proposition 2.9. Let A and B be commutative rings with identity, $f: A \rightarrow B a$ ring homomorphism and J an ideal of B. If J is included in the radical of Jacobson of B, then $\operatorname{Max}\left(A \bowtie^{f} J\right)=\left\{P_{f}^{\prime} \mid P \in \operatorname{Max}(A)\right\}$.
Proof. Since $J \subseteq \bigcap_{Q \in \operatorname{Max}(B)} Q$, then for all $Q \in \operatorname{Max}(\mathrm{~B}), J \subseteq Q$; so $\left\{\bar{Q}_{f}, Q \in\right.$ $\operatorname{Max}(\mathrm{B}) \backslash V(J)\}=\emptyset$.

Let A and B be commutative rings with identity, $f: A \rightarrow B$ a ring homomorphism and J an ideal of B. According to [6, Proposition 3.2], $A \bowtie^{f} J$ is a Noetherian ring if and only if A and $f(A)+J$ are Noetherian.

Proposition 2.10. Let A and B be commutative rings with identity, $f: A \rightarrow B$ a ring homomorphism and J an idempotent ideal of B. Assume that J is included in the radical of Jacobson of B. Then the following assertions are equivalent:

1. $A \bowtie^{f} J$ is a $Z P I$ ring.
2. A is a ZPI ring and $f(A)+J$ is a Noetherian ring.

Proof. (1) \Rightarrow (2) Follows from Proposition 2.4.
$(2) \Leftarrow(1)$ Since A and $f(A)+J$ are Noetherian, then $A \bowtie^{f} J$ is Noetherian. It suffices to prove that for all maximal ideal M of $A \bowtie^{f} J$ there is no ideal properly contained between M and M^{2}. Assume that there exists an ideal I of $A \bowtie^{f} J$ such that $M^{2} \subseteq I \subseteq M$, for some maximal ideal M of $A \bowtie^{f} J$. Since J is included in the radical of Jacobson of B, then by Proposition 2.9, $\operatorname{Max}\left(A \bowtie^{f} J\right)=\left\{P_{f}^{\prime} \mid P \in\right.$ $\operatorname{Max}(\mathrm{A})\}$; so $M=P \bowtie^{f} J$, for some maximal ideal P of A. We will show that $(0, J) \subseteq I$. Let $(0, a) \in(0, J)$. Since J is an idempotent ideal of B, there exist $\alpha_{1}, \ldots \alpha_{n}, \beta_{1}, \ldots, \beta_{n} \in J$ such that $a=\alpha_{1} \beta_{1}+\cdots+\alpha_{n} \beta_{n}$. Thus

$$
(0, a)=\left(0, \alpha_{1}\right)\left(0, \beta_{1}\right)+\cdots+\left(0, \alpha_{n}\right)\left(0, \beta_{n}\right) \in\left(P \bowtie^{f} J\right)^{2} \subseteq I .
$$

Now, since $M^{2} \subseteq I \subseteq M$, then $P^{2} \subseteq P_{A}(I) \subseteq P$. This implies that $P_{A}(I)=P^{2}$ or $P_{A}(I)=P$, because A is a $Z P I$ ring.

First case: $P_{A}(I)=P$. We will prove that $I=M=P \bowtie^{f} J$. It suffices to show that $P \bowtie^{f} J \subseteq I$. Let $(a, f(a)+j) \in P \bowtie^{f} J$. Then $a \in P_{A}(I)$; so there exists an $i \in J$ such that $(a, f(a)+i) \in I$. We have $(a, f(a)+j)=(a, f(a)+j+i-i)=$ $(a, f(a)+i)+(0, j-i)$. Since $(0, J) \subseteq I,(a, f(a)+j) \in I$. Thus $I=P \bowtie^{f} J$.

Second case: $P_{A}(I)=P^{2}$. We will prove that $I=M^{2}=\left(P \bowtie^{f} J\right)^{2}$. It suffices to show that $I \subseteq\left(P \bowtie^{f} J\right)^{2}$. Let $(a, f(a)+j) \in I$. Then $a \in P^{2}$; so $a=\alpha_{1} \beta_{1}+\cdots+\alpha_{n} \beta_{n}$ for some $\alpha_{1}, \ldots \alpha_{n}, \beta_{1}, \ldots, \beta_{n} \in P$. Thus
$(a, f(a)+j)=\left(\alpha_{1}, f\left(\alpha_{1}\right)\right)\left(\beta_{1}, f\left(\beta_{1}\right)\right)+\cdots+\left(\alpha_{n}, f\left(\alpha_{n}\right)\right)\left(\beta_{n}, f\left(\beta_{n}\right)\right)+(0, j)$.
Since $(0, J) \subseteq\left(P \bowtie^{f} J\right)^{2}$, then $(a, f(a)+j) \in\left(P \bowtie^{f} J\right)^{2}$. This implies that $I \subseteq\left(P \bowtie^{f} J\right)^{2}$. Hence $I=\left(P \bowtie^{f} J\right)^{2}$.

Let A be a commutative ring. We denote by $\Gamma(A):=\{(a, f(a)) \mid a \in A\}$ the Graph of A.

Example 2.11. Let A and B be commutative rings with identity, $f: A \rightarrow B$ a ring homomorphism and $J=(0)$. It is easy to see that J is an idempotent ideal of B included in the radical of Jacobson of B. By Proposition 2.10, $\Gamma(A)$ is a ZPI ring if and only if A is a ZPI ring and $f(A)$ is Noetherian.

Acknowledgments. The authors would like to thank the referee for his/her insightful suggestions towards the improvement of the paper.

References

[1] M. D'Anna, C. A. Finocchiaro and M. Fantana, Properties of chains of prime ideal of amalgamated algebra along an ideal, J. Pure Appl. Algebra, 214(9)(2010), 1633-1641.
[2] M. D'Anna, C. A. Finocchiaro and M. Fantana, Amalgamated algebra along an ideal, Commutative algebra and its applications, 155-172.
[3] M. D'Anna, A construction of Gorenstein rings, J. Algebra, 306(2)(2006), 507-519.
[4] M. D'Anna and M. Fontana, The amalgamated duplication of ring along an ideal: the basic properties, J. Algebra Appl., 6(2007), 241-252.
[5] H. S. Butts and R. Gilmer, Primary ideals and prime power ideals, Canadian J. Math., 18(1966), 1183-1195.
[6] A. Hamed and S. Hizem, S-Noetherian rings of the forms $\mathcal{A}[X]$ and $\mathcal{A}[[X]]$, Comm. Algebra, 43(9)(2015), 3848-3856.
[7] M. Larsen, and P. McCarthy, Multiplicative theory of ideals, Pure and Applied Mathematics, Academic Press, New York(1971).
[8] K. B. Levitz, A Charecterization of General Z.P.I-Rings, Proc. Amer. Math. Soc., 32(2)(1972), 376-380.
[9] C. A. Wood, On General Z.P.I-Rings, Pacific J. Math., 30(3)(1969), 837-846.

[^0]: *Corresponding Author.
 Received January 23, 2021; revised September 14, 2021; accepted December 6, 2021.
 2020 Mathematics Subject Classification: 13A15, 13F05, 13G05.
 Key words and phrases: ZPI ring, Amalgamated duplication ring, Dedekind domain.

