• Title/Summary/Keyword: 2-Banach spaces

Search Result 254, Processing Time 0.029 seconds

Noor Iterations with Error for Non-Lipschitzian Mappings in Banach Spaces

  • Plubtieng, Somyot;Wangkeeree, Rabian
    • Kyungpook Mathematical Journal
    • /
    • v.46 no.2
    • /
    • pp.201-209
    • /
    • 2006
  • Suppose C is a nonempty closed convex subset of a real uniformly convex Banach space X. Let T : $C{\rightarrow}C$ be an asymptotically nonexpansive in the intermediate sense mapping. In this paper we introduced the three-step iterative sequence for such map with error members. Moreover, we prove that, if T is completely continuous then the our iterative sequence converges strongly to a fixed point of T.

  • PDF

ANALYSIS OF SOLUTIONS FOR THE BOUNDARY VALUE PROBLEMS OF NONLINEAR FRACTIONAL INTEGRODIFFERENTIAL EQUATIONS INVOLVING GRONWALL'S INEQUALITY IN BANACH SPACES

  • KARTHIKEYAN, K.;RAJA, D. SENTHIL;SUNDARARAJAN, P.
    • Journal of applied mathematics & informatics
    • /
    • v.40 no.1_2
    • /
    • pp.305-316
    • /
    • 2022
  • We study the existence and uniqueness of solutions for a class of boundary value problems of nonlinear fractional order differential equations involving the Caputo fractional derivative by employing the Banach's contraction principle and the Schauder's fixed point theorem. In addition, an example is given to demonstrate the application of our main results.

MEAN CONVERGENCE THEOREMS AND WEAK LAWS OF LARGE NUMBERS FOR DOUBLE ARRAYS OF RANDOM ELEMENTS IN BANACH SPACES

  • Dung, Le Van;Tien, Nguyen Duy
    • Bulletin of the Korean Mathematical Society
    • /
    • v.47 no.3
    • /
    • pp.467-482
    • /
    • 2010
  • For a double array of random elements {$V_{mn};m{\geq}1,\;n{\geq}1$} in a real separable Banach space, some mean convergence theorems and weak laws of large numbers are established. For the mean convergence results, conditions are provided under which $k_{mn}^{-\frac{1}{r}}\sum{{u_m}\atop{i=1}}\sum{{u_n}\atop{i=1}}(V_{ij}-E(V_{ij}|F_{ij})){\rightarrow}0$ in $L_r$ (0 < r < 2). The weak law results provide conditions for $k_{mn}^{-\frac{1}{r}}\sum{{T_m}\atop{i=1}}\sum{{\tau}_n\atop{j=1}}(V_{ij}-E(V_{ij}|F_{ij})){\rightarrow}0$ in probability where {$T_m;m\;{\geq}1$} and {${\tau}_n;n\;{\geq}1$} are sequences of positive integer-valued random variables, {$k_{mn};m{{\geq}}1,\;n{\geq}1$} is an array of positive integers. The sharpness of the results is illustrated by examples.

STUDY OF OPTIMAL EIGHTH ORDER WEIGHTED-NEWTON METHODS IN BANACH SPACES

  • Argyros, Ioannis K.;Kumar, Deepak;Sharma, Janak Raj
    • Communications of the Korean Mathematical Society
    • /
    • v.33 no.2
    • /
    • pp.677-693
    • /
    • 2018
  • In this work, we generalize a family of optimal eighth order weighted-Newton methods to Banach spaces and study its local convergence to approximate a locally-unique solution of a system of nonlinear equations. The convergence in this study is shown under hypotheses only on the first derivative. Our analysis avoids the usual Taylor expansions requiring higher order derivatives but uses generalized Lipschitz-type conditions only on the first derivative. Moreover, our new approach provides computable radius of convergence as well as error bounds on the distances involved and estimates on the uniqueness of the solution based on some functions appearing in these generalized conditions. Such estimates are not provided in the approaches using Taylor expansions of higher order derivatives which may not exist or may be very expensive or impossible to compute. The convergence order is computed using computational order of convergence or approximate computational order of convergence which do not require usage of higher derivatives. This technique can be applied to any iterative method using Taylor expansions involving high order derivatives. The study of the local convergence based on Lipschitz constants is important because it provides the degree of difficulty for choosing initial points. In this sense the applicability of the method is expanded. Finally, numerical examples are provided to verify the theoretical results and to show the convergence behavior.

FIXED POINTS OF A CERTAIN CLASS OF ASYMPTOTICALLY REGULAR MAPPINGS

  • Jung, Jong-Soo;Thakur, Balwant-Singh;Sahu, Daya-Ram
    • Bulletin of the Korean Mathematical Society
    • /
    • v.37 no.4
    • /
    • pp.729-741
    • /
    • 2000
  • In this paper, we study in Banach spaces the existence of fixed points of asymptotically regular mapping T satisfying: for each x, y in the domain and for n=1, 2,…, $$\parallelT^nx-T^ny\parallel\leq$\leq$a_n\parallelx-y\parallel+b_n (\parallelx-T^nx\parallel+\parallely-T^ny\parallely)$$ where $a_n,\; b_n,\; C_n$ are nonnegative constants satisfying certain conditions. We also establish some fixed point theorems for these mappings in a Hibert space, in L(sup)p spaces, in Hardy space H(sup)p, and in Soboleve space $H^{k,p} for 1<\rho<\infty \; and \; k\geq0$. We extend results from papers [10], [11], and others.

  • PDF

Operators in L(X,Y) in which K(X,Y) is a semi M-ideal

  • Cho, Chong-Man
    • Bulletin of the Korean Mathematical Society
    • /
    • v.29 no.2
    • /
    • pp.257-264
    • /
    • 1992
  • Since Alfsen and Effors [1] introduced the notion of an M-ideal, many authors [3,6,9,12] have worked on the problem of finding those Banach spaces X and Y for which K(X,Y), the space of all compact linear operators from X to Y, is an M-ideal in L(X,Y), the space of all bounded linear operators from X to Y. The M-ideal property of K(X,Y) in L(X,Y) gives some informations on X,Y and K(X,Y). If K(X) (=K(X,X)) is an M-ideal in L(X) (=L(X,X)), then X has the metric compact approximation property [5] and X is an M-ideal in $X^{**}$ [10]. If X is reflexive and K(X) is an M-ideal in L(X), then K(X)$^{**}$ is isometrically isomorphic to L(X)[5]. A weaker notion is a semi M-ideal. Studies on Banach spaces X and Y for which K(X,Y) is a semi M-ideal in L(X,Y) were done by Lima [9, 10].

  • PDF

A NOTE ON APPROXIMATION PROPERTIES OF BANACH SPACES

  • Cho, Chong-Man
    • Communications of the Korean Mathematical Society
    • /
    • v.9 no.2
    • /
    • pp.293-298
    • /
    • 1994
  • It is well known that the approximation property and the compact approximation property are not hereditary properties; that is, a closed subspace M of a Banach space X with the (compact) approximation property need not have the (compact) approximation property. In 1973, A. Davie [2] proved that for each 2 < p < $\infty$, there is a closed subspace $Y_{p}$ of $\ell_{p}$ which does not have the approximation property. In fact, the space Davie constructed even fails to have a weaker property, the compact approximation property. In 1991, A. Lima [12] proved that if X is a Banach space with the approximation property and a closed subspace M of X is locally $\lambda$-complemented in X for some $1\leq\lambda < $\infty$, then M has the approximation property.(omitted)

  • PDF

GENERALIZED HYERS-ULAM-RASSIAS STABILITY FOR A GENERAL ADDITIVE FUNCTIONAL EQUATION IN QUASI-β-NORMED SPACES

  • Moradlou, Fridoun;Rassias, Themistocles M.
    • Bulletin of the Korean Mathematical Society
    • /
    • v.50 no.6
    • /
    • pp.2061-2070
    • /
    • 2013
  • In this paper, we investigate the generalized HyersUlam-Rassias stability of the following additive functional equation $$2\sum_{j=1}^{n}f(\frac{x_j}{2}+\sum_{i=1,i{\neq}j}^{n}\;x_i)+\sum_{j=1}^{n}f(x_j)=2nf(\sum_{j=1}^{n}x_j)$$, in quasi-${\beta}$-normed spaces.

HYERS-ULAM-RASSIAS STABILITY OF QUADRATIC FUNCTIONAL EQUATION IN THE SPACE OF SCHWARTZ TEMPERED DISTRIBUTIONS

  • CHUNG JAEYOUNG
    • The Pure and Applied Mathematics
    • /
    • v.12 no.2 s.28
    • /
    • pp.133-142
    • /
    • 2005
  • Generalizing the Cauchy-Rassias inequality in [Th. M. Rassias: On the stability of the linear mapping in Banach spaces. Proc. Amer. Math. Soc. 72 (1978), no. 2, 297-300.] we consider a stability problem of quadratic functional equation in the spaces of generalized functions such as the Schwartz tempered distributions and Sato hyperfunctions.

  • PDF