• Title/Summary/Keyword: 2,6-dichlorophenol

Search Result 34, Processing Time 0.03 seconds

A study on Anaerobic Biodegradation of Dichlorophenol (Dichlorophenol의 혐기성 분해에 관한 연구)

  • Park, Ju Seuk;Jeon, Yeon Ho
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.9 no.2
    • /
    • pp.127-135
    • /
    • 1995
  • The purpose of this study was to more fully evaluate the potential for chlorophenol degradation in anaerobic sludge. The pH effects on the ring cleavage of phenol and dechlorination of monochlorophenol isomers and dichlorophenl isomers. This study results are as follows ; Each of the monochlorophenol isomers were degraded in anaerobic sludge. The relatives rates were 2-Chlorophenol > 3-Chlorophenol > 4-Chlorophenol. Biodegradation results for the dichlorophenol isomers in anaerobic sludge are such as 2,3-dichlorophenol and 2,5-dichlorophenol was reductively dechlorinated to 3-chlorophenol, 2,4-dichlorophenol to 4-chlorophenol, 2,6-dichlorophenol to 2-chlorophenol. The two dichlorophenol isomers which did not contain an ortho Cl substituent 3,4-dichlorophenol and 3,5-dichlorophenol were persistent during the 6-week incubation. The rate of dechlorination was enhanced by the presence of a Cl group ortho, rather than para, to the site of dechlorination.

  • PDF

A Study on Immune Response by Intoxication of Parathion, Chloroform and 2,6-Dichlorophenol in Rats (Parathion, Chloroform 및 2,6-Dichlorophenol의 중독에 의한 흰쥐의 혈액학적 소견과 면양적혈구에 대한 항체 생산세포수에 미치는 영향)

  • Chung, Yong;Choi, Byung-Chull
    • YAKHAK HOEJI
    • /
    • v.26 no.4
    • /
    • pp.215-222
    • /
    • 1982
  • Among the environmental pollutants, parathion, chloroform and 2, 6-dichlorophenol may impair human health; they may inhibit or reduce the metabolic function of human body and may furthermore cause diseases directly or indirectly. This study was undertaken to investigate the effects on the immune response by intoxication of parathion, chloroform or 2, 6-dichlorophenol. Parathion(1.3mg/kg, olive oil 10ml), chloroform (100mg/kg, olive oil 10ml) were administered via intraperitoneal injection to rats. And 2, 6-dichlorophenol (13mg/kg, olive oil 10ml) was administered via oral injection. After 3 weeks, the rats were intoxicated with the above chemicals and immunized with sheep RBC. After 4 weeks the immune response of rat spleen cells was measured by the Jerne's technique. The results were obtained as follows. 1. There was no change of leukocyte counts by the intoxication of parathion, chloroform and 2, 6-dichlorophenol. 2. Parathion, chloroform and 2, 6-dichlorophenol reduced hemoglobin contents for most intoxicated and immunized groups. 3. Hematocrits were decreased by the intoxication of parathion, chloroform or 2, 6-dichlorophenol significantly. 4. It was determined that total protein, A/G (albumin/globulin), .alpha.-, .betha.-and .gamma.-globulins in rat serum were not changed. 5. Intoxication by parathion, chloroform or 2, 6-dichorophenol reduced the number of hemolytic plaque to the sheep RBC in rat spleen cells. Therefore, the capacity of erythrocyte production and the immune response of rat spleen cells were decreased by the intoxication of parathion, chloroform, or 2, 6-dichlorophenol.

  • PDF

A Study on Production of Chlorophenols by Chlorinaion of Drinking Water (상수 염소 소독에 의한 클로로페놀 생성에 관한 연구)

  • Chung, Yong;Kwon, Sook-Pyo;Park, Ha-Young
    • YAKHAK HOEJI
    • /
    • v.24 no.2
    • /
    • pp.87-95
    • /
    • 1980
  • Chlorination to polluted water can produce chlorocompounds which may impair human health. It has been discussed that chlorophenols would be one of undesirable substances in drinking water. This study was undertaken to investigate the production mechanism of chlorophenols by chlorination in the disinfection of water and to determine pollution levels of phenols as precursor of chlorophenols and chloropbenols in some sewage, stream water and tap water in the vicinity of Seoul from January to September, 1979. By chlorination with hyperchlorite to phenols in distilled water, o-chlorophenol was predominantly produced at the concentration of less than 10ppm of free chlorine. o-Chlorophenol, 2,6-dichlorophenol and 2,4-dichlorophenol were also produced by chlorination with the concenration from 20 to 100ppm of free chlorine. From the concentration of 100ppm of free chlorine to 200ppm, o-Chlorophenol was vanished and 2,6-dichlorophenol and 2,4-dichlorophenol were determined. Phenols originated from night soil, municipal sewage and stream were determined at 49.15 ppm. 0.095 ppm and 0.003 ppm in average respectively. About 87 and 88 percent of phenols in sewage and night soil were biodegradated by aeration for 10 days and 74 and 51 percent of phenols in sewage and night soil by spontaneous settling for 10 days. From the tap water in Seoul during summer, 1979, chlorophenols were identified; they were average 0.042 ppb of o-chlorophenol, 0.033 ppb of 2, 6-dichlorophenol and 0.003 ppb of 2, 4-dichlorophenol respectively. With the above result and discussion, it is considered that chlorophenols should be controlled from the source as well as chlorination in water purification.

  • PDF

Degradation of Chlorinated Phenolic Compounds by Soil Actinomycetes Isolated from the Contami-nated Soil Nearby the Kyung-An River (경안천 유역 오염토양에서 분리한 방선균의 염화 페놀계 화합물 분해)

  • 김성민;김창영;김응수
    • Microbiology and Biotechnology Letters
    • /
    • v.30 no.3
    • /
    • pp.287-292
    • /
    • 2002
  • Lignin-peroxidase (LiP) has been considered as one of the most important industrial enzymes for biodegradation of various recalcitrant toxic compounds such as chlorinated aromatic hydrocarbons and azo-dyes. Recently, several soil actinomycetes have been reported to secrete a functionally-similar lignin-peroxidase called actinomycetes lig-nin-peroxidase (ALiP). In this manuscript, we isolated over 100 morphologically distinct actinomycetes from the contaminated soils around 10 different gas stations located nearby the Kyung-An river. Among these actinomycetes screened based on the congo-red dye-decolorization activities, one newly-isolated actinomycetes named SMA-2 showed the most significant dye-decoloring activity on the congo-red plate as well as a significant ALiP activity in a yeast-extract-malt-extract liquid media supplemented with starch. The optimum SMA-2 culture condition fur ALiP production was determined and the kinetic parameters fur the SMA-2 AkIP activity were characterized. The optimally-cultured SMA-2 also exhibited the oxidation activities toward various recalcitrant aromatic compounds including phenol, 2- chlorophenol, 4- chlorophenol, 2,4- dichlorophenol ,2,6- dichlorophenol, and 2,4, f-trichlorophe - not, suggesting a potential application of SMA-2 for contaminated soil bioremediation.

Development of On-Site Process for Refractory 2,4-Dichlorophenol Treatment (난분해성 2,4-Dichlorophenol 처리를 위한 원위치 처리 프로세스 개발 연구)

  • Park, Kyeong-Deok;Kim, Il-Kyu
    • Journal of Power System Engineering
    • /
    • v.20 no.1
    • /
    • pp.42-49
    • /
    • 2016
  • This study showed that on-site ferrate(VI) solution was synthesized by wet oxidation method and applied aqueous 2,4-dichlorophenol(DCP) solution to evaluate the degradation efficiency. On-site ferrate(VI) solution was synthesized by putting $FeCl_3{\cdot}6H_2O$ in the strong alkali solution with NaClO and NaOH and applied DCP solution directly. DCP solution was extracted by the liquid-liquid method and analyzed by GC-ECD. The factors such as pH, DCP initial concentration, injected ferrate(VI) dosage, temperature were investigated. The optimum pH and temperature conditions of DCP degradation were obtained in neutral condition and $35^{\circ}C$. And the experimental results showed that DCP removal efficiency also increased with the decrease of DCP initial condition and the injected ferrate(VI) dosage.

Degradation of 2,3-dichlorophenol by a Photo-Fenton Process with Continuous Pump-Feeding of Hydrogen Peroxide (동력펌프주입식 광펜톤시스템에 의한 2,3-디염화페놀 분해특성 연구)

  • Kim, Il-Kyu
    • Journal of Power System Engineering
    • /
    • v.18 no.6
    • /
    • pp.84-90
    • /
    • 2014
  • The degradation of 2,3-dichlorophenol(2,3-diCP) by various advanced oxidation systems with continuous feeding of hydrogen peroxide including the ultraviolet/hydrogen peroxide, the Fenton and the photo-Fenton process has been conducted. The highest removal efficiency for 2,3-diCP in the aqueous phase was obtained by the photo-Fenton process among the advanced oxidation systems. In the photo-Fenton process, The removal efficiency of 2,3-diCP decreased with increasing pH in the range of 3 to 6, and it decreased with increasing initial concentration. As the intermediates of 2,3-diCP by photo-fenton reaction, 3,4-chlorocatechol and 2,3-dichlorohydroquinone were detected, thus the degradation pathways were proposed.

A Study on Oxidative Degradation of Chlorophenols by Heat Activated Persulfate (열적활성화된 과황산에 의한 염화페놀의 산화분해특성 연구)

  • Son, JiMin;Kwon, Hee-Won;Hwang, Inseong;Kim, Jeong-Jin;Kim, Young-Hun
    • Journal of Environmental Science International
    • /
    • v.29 no.1
    • /
    • pp.69-77
    • /
    • 2020
  • Oxidative degradation of phenol, three monochlorophenols (2-chlorophenol, 2-CP; 3-chlorophenol, 3-CP; 4-chlorophenol, 4-CP), four dichlorophenols (2,3-dichlorophenol, 2,3-DCP; 2,4-dichlorophenol, 2,4-DCP; 2,5-dichlorophenol, 2,5-DCP; 2,6-dichlorophenol, 2,6-DCP), and two trichlorophenols (2,4,5-trichlorophenol, 2,4,5-TCP; 2,4,6-trichlorophenol, 2,4,6-TCP) was conducted with heat activated persulfate. As the number of chlorinations increased, the reaction rate also increased. The reaction rate was relatively well fitted to the zero-order kinetic model, rather than the pseudo-first order kinetic model for the reactions at 60 ℃, which can be explained by insufficient activation of the persulfate at 60 ℃, and the oxidation reaction of 2,4,6-TCP at 70 ℃ was relatively well fitted to the pseudo-first order kinetic model. The oxidation reaction rate generally increased with increase of persulfate concentration in the solution. 2,6-dichloro-2,5-cyclohexadiene-1,4-dione was found as a degradation product in a GC/MS analysis. This compound is a non-aromatic compound, and one chlorine was removed. This result is similar to the result of previous studies. The current study proved that heat activated persulfate activation could be an alternative remediation technology for phenol and chlorophenols in soil and groundwater.

Mechanism of Phenoxy Compounds as an Endocrine Disrupter (Phenoxy계 화합물의 내분비장애작용 검색 및 기전연구)

  • 김현정;김원대;권택헌;김동현;박영인;동미숙
    • Toxicological Research
    • /
    • v.18 no.4
    • /
    • pp.331-339
    • /
    • 2002
  • Phenoxy compounds, 2,4-Dichlorophenol acetoxy acid (2,4-D) and 2,4-dichlorophenol (DCP), are widely used as a hormonal herbicide and intermediate for pesticide manufacturing, respectively. In order to assess the potential of these compounds as endocrine disruptors, we studied the androgenicity of them wing in vivo and in vitro androgenicity assay system. Administration of 2,4-D (50 mg/kg/day, p.o.) or DCP (100 mg/kg/day, p.o.) to rats caused an increase in the tissue weight of ventral prostate, Cowpers gland and glands penis. These increase of androgen-dependent tissues were additively potentiated when rats were simultaneously treated with low dose of testosterone (1 g/kg, s.c.). 2,4-D increased about 350% of the luciferase activity in the PC cells transiently cotransfected phAR and pMMTV-Luc at concentration of $10^{-9}$ M. In 2,4-D or DCP-treated castrated rats, testosterone 6$\beta$-hydroxylase activity was not significantly modulated even when rats were co-treated with testosterone. In vitro incubation of 2,4-D and DCP with microsomes at 50 $\mu$M inhibited testosterone 6$\beta$-hydroxylase activity about 27% and 66% in rat liver microsomes, about 44% and 54% in human liver microsomes and about 50% and 45% in recombinant CYP3A4 system, respectively. The amounts of total testosterone metabolites were reduced about 33% and 75% in rat liver microsomes, 69% and 73% in human liver microsomes and 54% and 64% in recombinant CYP3A4 by 2,4-D or DCP, respectively. Therefore, the additive androgenic effect of 2,4-D or DCP by the co-administration of the low dose of testosterone may be due to the increased plasma level of testosterone by inhibiting the cytochrome P450-mediated metabolism of testosterone. These results collectively suggested that 2,4-D and DCP may act as androgenic endocrine disrupter by binding to the androgen receptor as well as by inhibiting the metabolism of testosterone.

Design and Preparation of Magnetic CTAB/Montmorillonite Nanocomposite for Phenols Removal

  • Shen, Rong;Yu, Yichang;Wang, Yue;Xia, Zhining
    • Nano
    • /
    • v.13 no.10
    • /
    • pp.1850123.1-1850123.9
    • /
    • 2018
  • The cetyltrimethyl ammonium bromide (CTAB)-modified montmorillonite (MMT) was synthesized via a novel "dissolution and reassembly" method. To determine the optimal formula, the adsorption of C.I. Reactive Red 2 (X3B) with CTAB/MMT was investigated. The optimal CTAB/MMT nanocomposite was used to remove 2,6-dichlorophenol and p-nitrophenol from aqueous solutions. The adsorption results can be described by Langmuir isotherm, and the adsorption capacities were 200 mg/g and 125 mg/g for 2,6-dichlorophenol and p-nitrophenol, respectively. To realize the quick separation and recycle, the magnetic CTAB/MMT was further strategized and synthesized. The adsorption equilibrium time was 15 min for both contaminants; the ions' strength showed a little bit of influence on the adsorption performance. In addition, compared with acidic condition, neutral condition was more beneficial to the adsorption reaction. Due to the addition of $Fe_3O_4$, the adsorption capacities of this magnetic nanocomposite for 2,6-dichlorophenol and p-nitrophenol were a little bit decreased, which were 170 mg/g and 91 mg/g, respectively. However, the magnetic nanocomposite can be separated within 30 s under an external magnetic field, which would be useful in the practical application.

Effects of chemical modification on surface characteristics and 2,4-dichlorophenol adsorption on activated carbon (활성탄 개질에 따른 표면 특성 변화가 2,4-dichlorophenol 흡착성능에 미치는 영향)

  • An, Sun-Kyung;Song, Won-Jung;Park, Young-Min;Yang, Hyeon-A;Kweon, Ji-Hyang
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.34 no.6
    • /
    • pp.425-435
    • /
    • 2020
  • Numerous chemical modifications on activated carbon such as acidic conditioning, thermal treatment and metal impregnation have been investigated to enhance adsorption capacities of micropollutants in water treatment plants. In this study, chemical modification including acidic, alkaline treatment, and iron-impregnation was evaluated for adsorption of 2,4-dichlorophenol (2,4-DCP). For Fe-impregnation, three concentrations of ferric chloride solutions, i.e., 0.2 M, 0.4 M, and 0.8 M, were used and ion-exchange (MIX) of iron and subsequent thermal treatment (MTH) were also applied. Surface properties of the modified carbons were analyzed by active surface area, pore volume, three-dimensional images, and chemical characteristics. The acidic and alkaline treatment changed the pore structures but yielded little improvement of adsorption capacities. As Fe concentrations were increased during impregnation, the active adsorption areas were decreased and the compositional ratios of Fe were increased. Adsorption capacities of modified ACs were evaluated using Langmuir isotherm. The MIX modification was not efficient to enhance 2,4-DCP adsorption and the MES treatment showed increases in adsorption capacities of 2,4-DCP, compared to the original activated carbon. These results implied a possibility of chemical impregnation modification for improvement of adsorption of 2,4-DCP, if a proper modification procedure is sought.