DOI QR코드

DOI QR Code

Design and Preparation of Magnetic CTAB/Montmorillonite Nanocomposite for Phenols Removal

  • Shen, Rong (College of Bioengineering Chongqing University) ;
  • Yu, Yichang (State Key Laboratory of Pollution Control and Resource Reuse College of Environmental Science and Engineering Tongji University) ;
  • Wang, Yue (State Key Laboratory of Pollution Control and Resource Reuse College of Environmental Science and Engineering Tongji University) ;
  • Xia, Zhining (College of Bioengineering Chongqing University)
  • Received : 2018.04.02
  • Accepted : 2018.09.18
  • Published : 2018.10.31

Abstract

The cetyltrimethyl ammonium bromide (CTAB)-modified montmorillonite (MMT) was synthesized via a novel "dissolution and reassembly" method. To determine the optimal formula, the adsorption of C.I. Reactive Red 2 (X3B) with CTAB/MMT was investigated. The optimal CTAB/MMT nanocomposite was used to remove 2,6-dichlorophenol and p-nitrophenol from aqueous solutions. The adsorption results can be described by Langmuir isotherm, and the adsorption capacities were 200 mg/g and 125 mg/g for 2,6-dichlorophenol and p-nitrophenol, respectively. To realize the quick separation and recycle, the magnetic CTAB/MMT was further strategized and synthesized. The adsorption equilibrium time was 15 min for both contaminants; the ions' strength showed a little bit of influence on the adsorption performance. In addition, compared with acidic condition, neutral condition was more beneficial to the adsorption reaction. Due to the addition of $Fe_3O_4$, the adsorption capacities of this magnetic nanocomposite for 2,6-dichlorophenol and p-nitrophenol were a little bit decreased, which were 170 mg/g and 91 mg/g, respectively. However, the magnetic nanocomposite can be separated within 30 s under an external magnetic field, which would be useful in the practical application.

Keywords

References

  1. E. Diamanti-Kandarakis, J. P. Bourguignon, L. C. Giudice, R. Hauser, G. S. Prins, A. M. Soto, R. T. Zoeller and A. C. Gore, Endocr. Rev. 30, 293 (2009). https://doi.org/10.1210/er.2009-0002
  2. A. D. Pickering and J. P. Sumpter, Environ. Sci. Technol. 37, 331A (2003). https://doi.org/10.1021/es032570f
  3. Q. Qin, K. Liu, D. Fu and H. Gao, J. Environ. Sci. 24, 1411 (2012). https://doi.org/10.1016/S1001-0742(11)60924-8
  4. J. R. Dominguez-Vargas, J. A. Navarro-Rodriguez, J. B. de Heredia and E. M. Cuerda-Correa, J. Hazard. Mater. 169, 302 (2009). https://doi.org/10.1016/j.jhazmat.2009.03.075
  5. C. S. D. Rodrigues, O. S. G. P. Soares, M. T. Pinho, M. F. R. Pereira and L. M. Madeira, Appl. Catal. B: Environ. 219, 109 (2017). https://doi.org/10.1016/j.apcatb.2017.07.045
  6. J. Pan, H. Yao, W. Guan, H. Ou, P. Huo, X. Wang, X. Zou and C. Li, Chem. Eng. J. 172, 847 (2011). https://doi.org/10.1016/j.cej.2011.06.072
  7. H. Ding, X. Li, J. Wang, X. Zhang and C. Chen, J. Environ. Sci. 43, 187 (2016). https://doi.org/10.1016/j.jes.2015.09.004
  8. A. C. Pradhan, B. Nanda, K. M. Parida and M. Das, Dalton Trans. 42, 558 (2013). https://doi.org/10.1039/C2DT32050A
  9. K. M. Parida and A. C. Pradhan, Ind. Eng. Chem. Res. 49, 8310 (2010). https://doi.org/10.1021/ie902049s
  10. P. Szczepanski, Chem. Eng. Sci. 185, 141 (2018). https://doi.org/10.1016/j.ces.2018.04.007
  11. A. C. Pradhan, B. Nanda, K. M. Parida and G. R. Rao, J. Phys. Chem. C 119, 14145 (2015). https://doi.org/10.1021/acs.jpcb.5b09446
  12. G. Crini, Bio. Technol. 97, 1061 (2006). https://doi.org/10.1016/j.biortech.2005.05.001
  13. K. M. Parida and A. C. Pradhan, J. Hazard. Mater. 173, 758 (2010). https://doi.org/10.1016/j.jhazmat.2009.09.003
  14. G. Zhang and J. Wang, J. Phys. Chem. Sol. 115, 137 (2018). https://doi.org/10.1016/j.jpcs.2017.12.007
  15. E. P. Rebitski, P. Aranda, M. Darder, R. Carraro and E. Ruiz-Hitzky, Dalton Trans. 47, 3185 (2018). https://doi.org/10.1039/C7DT04197G
  16. C. Liu, Y.-F. Wei, H.-T. Qiu, J. Zhang and C.-J. Liu, Poly. Comp. 36, 47 (2015). https://doi.org/10.1002/pc.22911
  17. J. Liu, X. Zhang and T. Tan, Bio. Technol. 218, 737 (2016). https://doi.org/10.1016/j.biortech.2016.07.016
  18. P. Ma, X. Wang, B. Liu, Y. Li, S. Chen, Y. Zhang and G. Xu, J. Cellu. Plas. 48, 191 (2012). https://doi.org/10.1177/0021955X11434182
  19. K. Peng, L. Fu, J. Ouyang and H. Yang, Adv. Func. Mater. 26, 2666 (2016). https://doi.org/10.1002/adfm.201504942
  20. K. Peng, L. Fu, H. Yang, J. Ouyang and A. Tang, Nano Res. 10, 570 (2017). https://doi.org/10.1007/s12274-016-1315-3
  21. G. B. B. Varadwaj, S. Rana, K. Parida and B. B. Nayak, J. Mater. Chem. A 2, 7526 (2014). https://doi.org/10.1039/c4ta00042k
  22. W. Li, H. Dong, L. Wang, N. Li, X. Guo, J. Li and Y. Qiu, J. Mater. Chem. A 2, 13587 (2014). https://doi.org/10.1039/C4TA01550A
  23. K. Peng, L. Fu, X. Li, J. Ouyang and H. Yang, Appl. Clay Sci. 138, 100 (2017). https://doi.org/10.1016/j.clay.2017.01.003
  24. M. Darder, P. Aranda, A. I. Ruiz, F. M. Fernandes and E. Ruiz-Hitzky, Mater. Sci. Technol. 24, 1100 (2013).
  25. J. Zhu, M. Tian, Y. Zhang, H. Zhang and J. Liu, Chem. Eng. J. 265, 184 (2015). https://doi.org/10.1016/j.cej.2014.12.054
  26. Y. Zhu, Y. Wang, Q. Ling and Y. Zhu, Appl. Catal. B: Environ. 200, 222 (2017). https://doi.org/10.1016/j.apcatb.2016.07.002
  27. J. Chang, J. Ma, Q. Ma, D. Zhang, N. Qiao, M. Hu and H. Ma, Appl. Clay Sci. 119, 132 (2016). https://doi.org/10.1016/j.clay.2015.06.038
  28. R. Zhu, Q. Chen, Q. Zhou, Y. Xi, J. Zhu and H. He, Appl. Clay Sci. 123, 239 (2016). https://doi.org/10.1016/j.clay.2015.12.024
  29. M. Toor, B. Jin, S. Dai and V. Vimonses, J. Ind. Eng. Chem. 21, 653 (2015). https://doi.org/10.1016/j.jiec.2014.03.033
  30. C. Maqueda, M. dos Santos Afonso, E. Morillo, R. M. Torres Sanchez, M. Perez-Sayago and T. Undabeytia, Appl. Clay Sci. 72, 175 (2013). https://doi.org/10.1016/j.clay.2012.10.017
  31. W. Wang, J. Xiao, X. Wei, J. Ding, X. Wang and C. Song, Appl. Energy 113, 334 (2014). https://doi.org/10.1016/j.apenergy.2013.03.090
  32. C. Leodopoulos, D. Doulia and K. Gimouhopoulos, Separ. Purif. Rev. 44, 74 (2015). https://doi.org/10.1080/15422119.2013.823622
  33. L. Borgnino, C. E. Giacomelli, M. J. Avena and C. P. De Pauli, Coll. Surf. Phys. Eng. Aspects. 353, 238 (2010). https://doi.org/10.1016/j.colsurfa.2009.11.022
  34. S. Hamidouche, O. Bouras, F. Zermane, B. Cheknane, M. Houari, J. Debord, M. Harel, J.-C. Bollinger and M. Baudu, Chem. Eng. J. 279, 964 (2015). https://doi.org/10.1016/j.cej.2015.05.012
  35. S. Bhowmick, S. Chakraborty, P. Mondal, W. Van Renterghem, S. Van den Berghe, G. Roman-Ross, D. Chatterjee and M. Iglesias, Chem. Eng. J. 243, 14 (2014). https://doi.org/10.1016/j.cej.2013.12.049
  36. G. B. B. Varadwaj, K. Parida and V. O. Nyamori, Inorg. Chem. Fron. 3, 1100 (2016). https://doi.org/10.1039/C6QI00179C
  37. G. Wang, S. Wang, Z. Sun, S. Zheng and Y. Xi, Appl. Clay Sci. 148, 1 (2017). https://doi.org/10.1016/j.clay.2017.08.001
  38. A. C. Pradhan, G. B. B. Varadwaj and K. M. Parida, Dalton Trans. 42, 15139 (2013). https://doi.org/10.1039/c3dt51952j
  39. Y. Ma, L. Lv, Y. Guo, Y. Fu, Q. Shao, T. Wu, S. Guo, K. Sun, X. Guo, E. K. Wujcik and Z. Guo, Polymer 128, 12 (2017). https://doi.org/10.1016/j.polymer.2017.09.009
  40. G. Wang, S. Zhang, Y. Hua, X. Su, S. Ma, J. Wang, Q. Tao, Y. Wang and S. Komarneni, Appl. Clay Sci. 140, 1 (2017). https://doi.org/10.1016/j.clay.2017.01.023
  41. Q. Yang, M. Gao, Z. Luo and S. Yang, Chem. Eng. J. 285, 27 (2016). https://doi.org/10.1016/j.cej.2015.09.114
  42. H.-W. Gao, G. Xu and Y. Wang, RSC Adv. 4, 23690 (2014). https://doi.org/10.1039/C4RA01002G
  43. Y. C. Yu, Z. J. Hu, Z. Y. Chen, J. X. Yang, H. W. Gao and Z. W. Chen, RSC Adv. 6, 97523 (2016). https://doi.org/10.1039/C6RA20181D
  44. C. L. Yan Liu, Jian Sun, Haizhen Li, Zebin Sun and Shiqiang Yan, J. Mater. Chem. A 3, 5674 (2015). https://doi.org/10.1039/C4TA07112C
  45. Y. Yu, Z. Hu, Y. Wang and H. Gao, Intern. J. Min. Pro. 162, 1 (2017). https://doi.org/10.1016/j.minpro.2017.02.001
  46. G. Xue, M. Gao, Z. Gu, Z. Luo and Z. Hu, Chem. Eng. J. 218, 223 (2013). https://doi.org/10.1016/j.cej.2012.12.045
  47. F. An, B. Gao and X. Feng, J. Hazard. Mater. 157, 286 (2008). https://doi.org/10.1016/j.jhazmat.2007.12.095
  48. P. Sudhakar, I. D. Mall and V. C. Srivastava, Desalin. Wat. Treat. 57, 12375 (2015).