• 제목/요약/키워드: 1-8D gene

검색결과 501건 처리시간 0.028초

Active Immunization Study of Colon Cancer Derived 1-8D Peptide in HHD Mice

  • Jung, Hun-Soon;Ahn, In-Sook;Do, Hyung-Ki;Lemonnier, Francois A.;Song, Kuk-Hyun;Do, Myoung-Sool
    • IMMUNE NETWORK
    • /
    • 제5권3호
    • /
    • pp.157-162
    • /
    • 2005
  • Background: 1-8D gene is a member of human 1-8 interferon inducible gene family and was shown to be overexpressed in fresh colon cancer tissues. Three peptides 1-6, 3-5 and 3-7 derived from human 1-8D gene were shown to have immunogenicity against colon cancer. Methods: To study tumor immunotherapy, of three peptides we established an active immunization model using HHD mice. $D^{b-/-}{\times}{\beta}2$ microglobulin $({\beta}2m)$ null mice transgenic for a chimeric HLA-$A2.1/D^{b-}\;{\beta}2m$ single chain (HHD mice) were challenged with B16/HHD/1-8D tumor cells and were immunized with irradiated peptide-loaded RMA- S/HHD/B7.1 transfectants. In therapy model tumor growth was retarded in HHD mice that were injected with 3-5 peptide-loaded RMA-S/HHD/B7.1. In survival test vaccination with 1-8D-derived peptide protects HHD mice from tumor progression after tumor challenge. Results: These studies show that peptide 3-5 derived from 1-8D gene can be the most effective candidate for the vaccine of immunotherapy against colon cancer and highlight 1-8D gene as putative colon carcinoma associated antigens. Conclusion: We demonstrated that RMA-S/HHD/ B7.1 loaded with 1-8D peptides, especially 3-5, immunization generates potent antitumor immunity against tumor cells in HHD mice and designed active immunization as proper immunotherapeutic protocols.

Investigation of gene-gene interactions of clock genes for chronotype in a healthy Korean population

  • Park, Mira;Kim, Soon Ae;Shin, Jieun;Joo, Eun-Jeong
    • Genomics & Informatics
    • /
    • 제18권4호
    • /
    • pp.38.1-38.9
    • /
    • 2020
  • Chronotype is an important moderator of psychiatric illnesses, which seems to be controlled in some part by genetic factors. Clock genes are the most relevant genes for chronotype. In addition to the roles of individual genes, gene-gene interactions of clock genes substantially contribute to chronotype. We investigated genetic associations and gene-gene interactions of the clock genes BHLHB2, CLOCK, CSNK1E, NR1D1, PER1, PER2, PER3, and TIMELESS for chronotype in 1,293 healthy Korean individuals. Regression analysis was conducted to find associations between single nucleotide polymorphism (SNP) and chronotype. For gene-gene interaction analyses, the quantitative multifactor dimensionality reduction (QMDR) method, a nonparametric model-free method for quantitative phenotypes, were performed. No individual SNP or haplotype showed a significant association with chronotype by both regression analysis and single-locus model of QMDR. QMDR analysis identified NR1D1 rs2314339 and TIMELESS rs4630333 as the best SNP pairs among two-locus interaction models associated with chronotype (cross-validation consistency [CVC] = 8/10, p = 0.041). For the three-locus interaction model, the SNP combination of NR1D1 rs2314339, TIMELESS rs4630333, and PER3 rs228669 showed the best results (CVC = 4/10, p < 0.001). However, because the mean differences between genotype combinations were minor, the clinical roles of clock gene interactions are unlikely to be critical.

Expression of orf8 (chlD) as Glucose-1-Phosphate Thymidylyltransferase Gene Involved in Olivose Biosynthesis from Streptomyces antibioticus Tü99 and Biochemical Properties of the Expressed Protein

  • Yoo, Jin-Cheol;Lee, Eun-Ha;Han, Ji-Man;Bang, Hee-Jae;Sohng, Jae-Kyung
    • BMB Reports
    • /
    • 제32권4호
    • /
    • pp.363-369
    • /
    • 1999
  • The orf8(chlD) gene cloned from Streptomyces antibioticus T$\"{u}$99 was overexpressed using an E. coli system to confirm its biological function. Induction of the E. coli strain transformed with recombinant plasmid pRFJ 1031 containing orf8 resulted in the production of a 43,000 dalton protein. Glucose-1-phosphate thymidylyltransferase activity of the cell extract obtained from the transformed strain was 4-5 times higher than that of the control strain. The expressed protein was purified 18-fold from E. coli cell lysate using three chromatographic steps with a 17% overall recovery to near homogeneity. The N-terminal amino acid sequence of the purified protein agrees with the nucleotide sequence predicted from the orf8 gene. The SDS-PAGE estimated subunit mass of 43,000 dalton agrees well with that calculated from the amino acid composition deduced from the nucleotide sequence of the orf8 gene (43,000 Da). Also, the native enzyme has a monomeric structure with a molecular mass of 43,000 dalton. The purified protein showed glucose-1-phosphate thymidylyltransferase activity catalyzing a reversible bimolecular group transfer reaction, and was highly specific for dTTP and ${\alpha}$-D-glucose 1-phosphate as substrates in the forward reaction, and for dTDP-D-glucose and pyrophosphate in the reverse reaction.

  • PDF

Utility of the pat gene as a selectable marker gene in production of transgenic Dunaliella salina

  • Jung, Hyo Sun;Kim, Dong Soo
    • Fisheries and Aquatic Sciences
    • /
    • 제19권7호
    • /
    • pp.31.1-31.6
    • /
    • 2016
  • Background: The objective of this study was to develop an efficient selectable marker for transgenic Dunaliella salina. Results: Tests of the sensitivity of D. salina to the antibiotic chloramphenicol and the herbicide Basta$^{(R)}$ showed that cells ($1.0{\times}10^6cells/ml$) treated with 1000 or $1500{\mu}g/ml$ chloramphenicol died in 8 or 6 days, respectively, whereas D. salina cells ($1.0{\times}10^6cells/ml$) treated with 5, 10, 20, or $40{\mu}g/ml$ Basta$^{(R)}$ died in 2 days. Therefore, D. salina is more sensitive to Basta$^{(R)}$ than to chloramphenicol. To examine the possibility of using the phosphinothricin N-acetyltransferase (pat) gene as a selectable marker gene, we introduced the pat genes into D. salina with particle bombardment system under the condition of helium pressure of 900 psi from a distance of 3 cm. PCR analysis confirmed that the gene was stably inserted into the cells and that the cells survived in $5{\mu}g/ml$ Basta$^{(R)}$, the medium used to select the transformed cells. Conclusions: The findings of this study suggest that the pat gene can be used as an efficient selectable marker when producing transgenic D. salina.

Aspartate계 아미노산 대사 효모 유전자 HOM6의 cloning 및 구조분석 (Molecular cloning and restriction endonuclease mapping of homoserine dehydrogenase gene (HOM6) in yeast saccharomyces cerevisiae)

  • 김응기;이호주
    • 미생물학회지
    • /
    • 제24권4호
    • /
    • pp.357-363
    • /
    • 1986
  • Synthesis of threonine and methionine in yeast, Saccharomyces cerevisiae shares a common pathway from aspartate via homoserine. HOM6 gene encodes homoserine dehydrogenase (HSDH) which catalyzes the inter-conversion of beta-aspartate semialdehyde and homoserine. The level of HSDH is under methionine specific control. A recombinant plasmid (pEK1: 13.3kb), containing HOM6 gene, has been isolated and cloned into E. coli by complenemtary transformation of a homoserine auxotrophic yeast strain M-20-20D (hom6, trp1, ura3) to a prototrophic M20-20D/pEK1, using a library of yeast genomic DNA fragments in a yeast centromeric plasmid, YCp50(8.0kb). Isolation of HOM6has been primarily confirmed by retransformation of the original yeast strain M20-20D, using the recombinant plasmid DNA which was extracted from M20-20D/pEK1 and subsequently amplified in E. coli. Eleven cleavage sites in the insery (5.3kb) have been localized through fragment analysis for 8 restriction endonucleases; Bgl II(2 site), Bgl II(1), Cla I(3), Eco RI(1), Hind III(2), Kpn I (1), Pvu II(1) and Xho I(1).

  • PDF

도심 학교 토양의 메탄 산화 및 생성 잠재력 평가 (Evaluation of Methane Oxidation and the Production Potential of Soils in an Urban School)

  • 이윤영;김태관;류희욱;조경숙
    • 한국미생물·생명공학회지
    • /
    • 제42권1호
    • /
    • pp.32-40
    • /
    • 2014
  • 본 연구에서는 도심 학교 운동장(soil A)과 화단(soil B, C, & D)에서 채취한 토양의 잠재적인 메탄 산화 및 생성능을 평가하였다. 토양 원시료 중 메탄 산화균 수를 정량 분석한 결과, 운동장 토양(soil A)는 $6.1{\times}10^3$ gene copy number/g dry weight soil이었으나, 화단 토양(soil B~D)는 $1.6-1.9{\times}10^5$ gene copy number/g dry weight soil이었다. 토양을 넣은 혈청병에 메탄 가스를 주입하여 잠재 메탄 산화능을 평가한 결과, 운동장 토양은 다른 토양보다 메탄을 산화하기까지 긴 유도기를 보였으나, 유도기 이후에는 화단 토양과 거의 유사한 메탄 산화능을 나타냈다. 또한 운동장 토양의 메탄 산화균 수는 $2.3{\times}10^7$ gene copy number/g dry weight soil까지 증가하여 화단 토양의 메탄 산화균 수($1.2-2.8{\times}10^8$ gene copy number/g dry weight soil)과 유의적 차이를 보이지 않았다. 교정에서 채취한 토양의 메탄 생성 거동도 메탄 산화와 유사한 패턴을 보였다. 토양 원시료의 메탄 생성균 수는 화단 토양($1.3-3.4{\times}10^7$ gene copy number/g dry weight soil)에 비해 운동장 토양($1.7{\times}10^5$ gene copy number/g dry weight soil)이 훨씬 적었다. 그러나 토양에 유기물을 첨가한 후 메탄 생성 현상이 발휘된 후에는 메탄 생성 균수는 운동장 토양과 화단토양 모두 $10^7$ gene copy number/g dry weight soil 수준이었다. 본 연구를 통해 도심 교정에서 채취한 네 종류의 토양은 모두 메탄 산화균 및 생성균을 가지고 있으며, 메탄 산화와 생성에 적합한 조건이 되면, 메탄 산화균 및 생성균의 개체군이 증가하여 메탄을 산화하거나 생성할 수 있는 잠재력을 지니고 있음을 알 수 있었다.

Association between the Alu Insertion/Deletion Polymorphism in the Tissue-Type Plasminogen Activator Gene and Mirtazapine Response in Koreans with Major Depression

  • Kim, Daseul;Chang, Hun Soo;Won, Eunsoo;Ham, Byung-Joo;Lee, Min-Soo
    • 생물정신의학
    • /
    • 제23권4호
    • /
    • pp.140-147
    • /
    • 2016
  • Objectives To determine the relationship between the Alu insertion/deletion (I/D) polymorphism in the tissue-type plasminogen activator (tPA) gene and the clinical outcome of mirtazapine treatment in Korean major depressive disorder (MDD) patients. Methods We enrolled 422 patients in this study. Symptoms were evaluated using the 21-item Hamilton Depression Rating (HAMD-21) Scale. After 1, 2, 4, and 8 weeks of mirtazapine treatment, the association between the Alu I/D polymorphism in the tPA gene and remission/response outcomes were evaluated. Results The proportion of I/I homozygotes in responders was higher than that in non-responders, whereas the proportion of D/D homozygotes in responders was lower than that in non-responders at 8 weeks of treatment (p = 0.032, OR = 1.57). The percentage decline of HAMD-21 scores in I allele carriers was larger than that of D/D homozygotes at 2 and 8 weeks of treatment (p = 0.035 and 0.007, respectively). I allele carriers were associated with remission at 8 weeks of treatment (p = 0.047, OR = 2.2). Conclusions These results show that treatment response and remission to mirtazapine were associated with the Alu I/D polymorphism of the tPA gene. This suggests the Alu I/D polymorphism may be a potential genetic marker for the prediction of therapeutic response to mirtazapine treatment in patients with MDD.

Insertion/Deletion Polymorphism of the Angiotensin Converting Enzyme Gene in Coronary Artery Disease in Southern Turkey

  • Acarturk, Esmeray;Attila, Gulen;Bozkurt, Abdi;Akpinar, Onur;Matyar, Selcuk;Seydaoglu, Gulsah
    • BMB Reports
    • /
    • 제38권4호
    • /
    • pp.486-490
    • /
    • 2005
  • Genetic factors are important in the pathogenesis of coronary artery disease (CAD). Angiotensin converting enzyme (ACE) gene insertion(I)/deletion(D) polymorphism is one of the genetic factor found to be related with CAD. We investigated the association between I/D polymorphism of the ACE gene and the presence of CAD. Threehundred and seven patients (187 males and 120 females, aged between 35-80, mean $54.3{\pm}9.8$ years) who underwent diagnostic coronary angiography were included in the study. ACE I/D polymorphism was detected by polymerase chain reaction. Of the 307, 176 had CAD. The most frequently observed genotype in all subjects was ID (47.9 %). However, in patients with CAD the frequency of II genotype was lower whereas DD genotype was higher compared to the controls (p < 0.05). The number of D allele carrying subjects were also higher (p < 0.05) in CAD patients. The logistic regression analysis indicated that the ACE D allele is an independent risk factor (odds ratio = 1.48, 95% CI = 1.01-2.18, p < 0.05). In conclusion, the I/D polymorphism of ACE gene (carrying D allele) is an independent risk factor for CAD in the studied Turkish population.

Expression of a rice DREB1 gene, OsDREB1D, enhances cold and high-salt tolerance in transgenic Arabidopsis

  • Zhang, Yang;Chen, Chen;Jin, Xiao-Fen;Xiong, Ai-Sheng;Peng, Ri-He;Hong, Yi-Huan;Yao, Quan-Hong;Chen, Jian-Min
    • BMB Reports
    • /
    • 제42권8호
    • /
    • pp.486-492
    • /
    • 2009
  • OsDREB1D, a special DREB (dehydration responsive element binding protein) homologous gene, whose transcripts cannot be detected in rice (Oryza sativa L), either with or without stress treatments, was amplified from the rice genome DNA. The yeast one-hybrid assay revealed that OsDREB1D was able to form a complex with the dehydration responsive element/C-repeat motif. It can also bind with a sequence of LTRE (low temperature responsive element). To analyze the function of OsDREB1D, the gene was transformed and over-expressed in Arabidopsis thaliana cv. Columbia. Results indicated that the over-expression of OsDREB1D conferred cold and high-salt tolerance in transgenic plants, and that transgenic plants were also insensitive to ABA (abscisic acid). From these data, we deduced that this OsDREB1D gene functions similarly as other DREB transcription factors. The expression of OsDREB1D in rice may be controlled by a special mechanism for the redundancy of function.

Characterization of the pcbE Gene Encoding 2-Hydroxypenta-2,4-Dienoate Hydratase in Pseudomonas sp. DJ-12

  • Lim, Jong-Chul;Lee, Jeongrai;Jang, Jeong-Duk;Lim, Jai-Yun;Min, Kyung-Rak;Kim, Chi-Kyung;Kim, Young-Soo
    • Archives of Pharmacal Research
    • /
    • 제23권2호
    • /
    • pp.187-195
    • /
    • 2000
  • Nucleotide sequence extending 2,3-dihydroxybiphenyl 1,2-dioxygenase gene (pcbC) and 2-hydroxy-6-oxo-6-phenylhexa-2,4-dienoate hydrolase gene (pcbD) of Pseudomonas sp. DJ-12 was previously analyzed and the two genes were present in the order of pcbD-pcbC preceded by a promoter from Pseudomonas sp. DJ-12. In this study, a 3.8-kb nucleotide sequence located downstream of the pcbC gene was analyzed to have three open reading frames (ORFs) that are designated as orf1, pcbE and orf2 genes. All of the ORFs were preceded by each ribosome-binding sequence of 5-GGAXA-3 (X=G or A). However, no promoter-like sequence and transcription terminator sequence were found in the analyzed region, downstream of pcbC gene. Therefore, the gene cluster appeared to be present in the order of pcbD-pcbC-orf1-pcbE-orf2 as an operon, which is unique organization characterized so far in biphenyl- and PCB-degrading bacteria. The orf1 gene was composed of 1,224 base pairs which can encode a polypeptide of molecular weight 44,950 containing 405 amino acid residues. A deduced amino acid sequence of the orf1 gene product exhibited 21-33% identity with those of indole dioxygenase and phenol hydroxylase components. The pcbE gene was composed of 783 base pairs encoding 2-hydroxypenta-2,4-dienoate hydratase involved in the 4-chlorobiphenyl catabolism. The orf2 gene was composed of 1,017 base pairs encoding a polypeptide of molecular weight 37,378 containing 338 amino acid residues. A deduced amino acid sequence of the orf2 gene product exhibited 31% identity with that of a nitrilotriacetate monooxygenase component.

  • PDF