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Introduction 

Many biological processes have circadian rhythms with a cycle of approximately 24 
hours. Such circadian rhythms appear at the cellular, molecular, tissue, and organ levels in 
humans. Both the suprachiasmatic nucleus, which is the internal master clock, and vari-
ous environmental stimuli (e.g., the light-dark cycle) may play roles together in regulation 
of circadian rhythm. The sleep-wake cycle is one of the most distinct circadian rhythms. 
Humans have a preferred timing of sleeping and waking, the so-called chronotype. The 
degree of morning preference shows a continuum from morning type (with an advanced 
sleep phase) to evening type (with a delayed sleep phase) [1]. The chronotype is known 
to be determined in a complex manner by age, sex, and various environmental factors, in-
cluding level of light exposure [2-4]. Developmental changes in chronotype occur; these 
include earlier preference during childhood, later preference in adolescence and early 
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Chronotype is an important moderator of psychiatric illnesses, which seems to be con-
trolled in some part by genetic factors. Clock genes are the most relevant genes for chro-
notype. In addition to the roles of individual genes, gene-gene interactions of clock genes 
substantially contribute to chronotype. We investigated genetic associations and gene-
gene interactions of the clock genes BHLHB2, CLOCK, CSNK1E, NR1D1, PER1, PER2, PER3, 
and TIMELESS for chronotype in 1,293 healthy Korean individuals. Regression analysis was 
conducted to find associations between single nucleotide polymorphism (SNP) and chro-
notype. For gene-gene interaction analyses, the quantitative multifactor dimensionality re-
duction (QMDR) method, a nonparametric model-free method for quantitative phenotypes, 
were performed. No individual SNP or haplotype showed a significant association with 
chronotype by both regression analysis and single-locus model of QMDR. QMDR analysis 
identified NR1D1 rs2314339 and TIMELESS rs4630333 as the best SNP pairs among 
two-locus interaction models associated with chronotype (cross-validation consistency 
[CVC] = 8/10, p = 0.041). For the three-locus interaction model, the SNP combination of 
NR1D1 rs2314339, TIMELESS rs4630333, and PER3 rs228669 showed the best results (CVC 
= 4/10, p < 0.001). However, because the mean differences between genotype combina-
tions were minor, the clinical roles of clock gene interactions are unlikely to be critical. 
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adulthood, and gradually earlier preference with advancing age 
[2]. 

Chronotype has been studied extensively in a number of ways. 
For convenience in many studies, chronotype has been measured 
subjectively and arbitrarily classified as morning, intermediate, and 
evening types, according to the Composite Scale of Morningness 
(CS) [5,6]. Chronotype shows a normal or near-normal distribu-
tion in the population; the heritability of chronotype has been 
shown to range between 21% and 52% [7]. Therefore, chronotype 
is presumably a polygenic quantitative trait [8,9]. Circadian 
rhythms are regulated by a set of circadian genes in mammals 
[9,10]. These circadian genes are also known as clock genes; they 
include ADCYAP1, ARNTL, BHLHB2, BHLHB3, CLOCK, 
PER1, PER2, PER3, NR1D1, NPAS2, NR1D1, THRA, CSNK1D, 
CSNK1E, CRY2, RORA, RORB, TIMELESS, and VIP. Notably, 
the list continues to grow due to discoveries in this field. Recently, 
three genome-wide association studies (GWASs) have been per-
formed in people of European ancestry [11-13]. The results indi-
cated meaningful overlap of genes that exhibited significant associ-
ations with chronotype. All three GWASs supported the associa-
tion of four genes—PER2, RGS16, FBXL13, and AK5—with 
chronotype [14]. A meta-analysis of these three GWASs identified 
351 loci associated with chronotype, of which 327 loci were novel 
and 24 loci had been reported in other GWASs [15]. 

GWASs can identify only common genetic variants, with small 
or modest effects for complex traits. Chronotype is a complex trait, 
which may be influenced by polygenes. A recent GWAS found 
only common genetic variants with small individual genetic effects 
on chronotypes. Only a subset of the significant variants found in 
that GWAS were known clock genes or have been suggested to 
function as clock genes. There were many other genetic variants 
without known functions as clock genes. Genetic control of chro-
notype must occur in multiple ways, with individual genotypic as-
sociations of polygenes, haplotypic associations of more crucial 
genes, and gene-gene interactions of multiple biologically related 
functional genes. Here, we investigated possible roles for gene-
gene interactions of clock genes in chronotype in a Korean popu-
lation. 

Methods 

Participants 
The study population consisted of 1,293 unrelated healthy Korean 
individuals. These were the same individuals included as controls 
in our previous study of bipolar disorder [16]. They consisted 
mostly of college students, nurses, and public officials, who were 
recruited after a brief psychiatric interview. Potential participants 

were excluded if they reported a history of a psychotic disorder, 
mood disorder, anxiety disorder, substance use disorder, brain 
trauma, or intellectual disability. All participants were informed of 
the purpose and methods of the study and provided informed 
consent before enrollment. The Ethics Committee of Eulji Gener-
al Hospital approved the study protocol (IRB No. 2016-08-009). 

Measurement of chronotype 
Chronotype was measured using a self-reported questionnaire. 
The CS is a 13-item questionnaire, which assesses individual dif-
ferences in the time of day a person prefers to carry out various ac-
tivities; it classifies people as morning, intermediate, or evening 
types [5]. Three items are scored on a five-point scale from 1 to 5; 
the other 10 items are scored on a four-point scale, from 1 to 4. 
Higher scores indicate morning preference. All participants com-
pleted the CS questionnaire. 

Genotyping 
The clock genes investigated in this study were BHLHB2, CLOCK, 
CSNK1E, NR1D1, PER1, PER2, PER3, and TIMELESS. These 
eight genes were analyzed for 19 different tag single nucleotide 
polymorphisms (SNPs) with minor allele frequencies exceeding 
5% in Asian populations. DNA was extracted from blood and SNPs 
were genotyped using the TaqMan method (Applied Biosystems, 
Foster City, CA, USA). Table 1 presents a summary of the minor 
allele frequencies and chromosomal locations of the SNPs. 

Statistical analysis 
Individual SNPs were examined for Hardy-Weinberg equilibrium; 
two SNPs violating Hardy-Weinberg equilibrium were removed. 
Each SNP association with CS score was analyzed by simple re-
gression analysis. Haplotype association with CS was also analyzed 
by PLINK if more than two SNPs for each gene were included 
[17]. 

Gene-gene interactions were analyzed using the quantitative 
multifactor-dimensionality reduction (QMDR) method, an exten-
sion of the multifactor-dimensionality reduction (MDR) algo-
rithm to work with quantitative or continuous phenotypes [18]. 
The MDR method is one a commonly used method for detection 
and characterization of high-order gene-gene or gene-environment 
interactions in case-control studies; this comprises a nonparamet-
ric combinatorial approach that reduces the number of dimensions 
[19]. For each multi-locus genotype combination, QMDR calcu-
lates the mean value of phenotype and compares it to the overall 
mean to determine the genotype combination is high risk or low 
risk. By pooling all the genotypes into either high-risk or low-risk 
groups, a new binary attribute is created. The t-test is used to com-
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pare the means between high and low risk groups using a t-test and 
t-statistic is used as a training score to choose the best model. In 
QMDR, the training and testing score are defined by t-test statis-
tic. The training score is used to determine the best K-order inter-
action model. QMDR use 10-fold cross-validation and cross-vali-
dation consistencies (CVCs) of each model chosen are recorded. 
The best overall QMDR model is selected as that with the maxi-
mum testing score and highest cross-validation consistency. To es-
timate the p-values of the chosen model, empirical null distribu-
tion is used [18]. 

In this study, interactions of up to three loci were tested using 
10-fold cross-validation in a search considering all possible SNP 
combinations. SNP combination with maximum CVC was con-
sidered the best model. p-values were determined empirically by 
1,000-fold permutations of case and control labels. 

Results 

The study population consisted of 481 male participants (37.2%) 
and 812 female participants (62.8%). Mean ages were 27.5 ±  8.3 
years for male participants and 23.7 ±  3.5 years for female partici-
pants. Mean CS scores were 32.3 ±  6.4 for male participants and 
29.7 ±  5.7 for female participants. The classification of chrono-
type using total CS score revealed 305 evening type participants 
(23.6%), 911 intermediate type participants (70.5%), and 77 
morning type participants (6.0%) in the study population. The 

distributions of total CS score according to age and chronotype 
are shown in Table 2. 

Two SNPs of PER1 were excluded from further analysis because 
they were found to deviate from Hardy-Weinberg equilibrium. Ul-
timately, 17 SNPs of seven genes were analyzed. In regression anal-
yses, no individual SNP showed a significant association with CS 
score (Table 3). There were no significant haplotype associations 
with CS score for any of the genes with more than two SNPs in 
this study (Table 4). On QMDR analyses, no single locus was 
found to be associated with chronotype, similar to the results of 
regression analysis. NR1D1 rs2314339 and TIMELESS rs4630333 
were significantly associated with chronotype in a two-locus mod-
el (CVC =  8/10, p =  0.041). In the three-locus models, NR1D1 
rs2314339, TIMELESS rs4630333, and PER3 rs228669 showed 
the strongest association with chronotype (CVC =  4/10, p <  
0.001). A summary of QMDR results with CVC >  1/10 is pre-
sented in Table 5. 

Discussion 

We hypothesized that circadian genes play an important role in 
chronotype regulation and that there are gene-gene interaction ef-
fects on chronotype. We identified the best interaction models for 
two and three loci, as well as statistical significances of the best in-
teraction models for chronotype in a Korean population, using the 
QMDR method and corresponding permutation test. However, it 

Table 1. SNPs of clock genes and minor allele frequency

Gene SNPa Base Chr Position Function MAF
BHLHB2 rs6442925 CT 3 4972191 Intron 0.047

rs2137947 CT 3 4989276 Noncoding transcript variant 0.323
CLOCK rs1801260 CT 4 55435202 3’-UTR 0.099

rs3805148 AC 4 55440643 Intron 0.349
rs12504300 CG 4 55482360 Intron 0.379
rs4864542 CG 4 55487920 Intron 0.351
rs12649507 AG 4 55514317 Intron 0.352

CSNK1E rs135745 CG 22 38287631 None 0.223
rs1534891 CT 22 38299094 Intron 0.093
rs2075984 AC 22 38294883 Intron 0.408

NR1D1 rs2314339 CT 17 40096959 Intron 0.459
rs2269457 AG 17 40098436 Intron 0.505

PER2 rs2304672 CG 2 238277948 5'-UTR 0.063
rs2304669 AG 2 238257022 Synonymous 0.116

PER3 rs228669 AG 1 7809988 Synonymous 0.257
TIMELESS rs4630333 AG 12 56443632 Intron 0.452

rs1082214 AG 12 56452706 Intron 0.095

SNP, single nucleotide polymorphism; Chr, chromosome; MAF, minor allele frequency; UTR, untranslated region.
aTotal of 17 SNPs are remained after Hardy-Weinberg equilibrium test.
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Table 2. CS score by age and chronotype distribution

Variable Male Female Total
Age (y) 481 812 1,293
  0–9 1 (0.2) 0 1 (0.1)
  10–19 9 (1.9) 35 (4.3) 44 (3.4)
  20–29 147 (30.6) 361 (44.5) 508 (39.3)
  30–39 261 (54.3) 377 (46.4) 638 (49.3)
  40–49 61 (12.7) 39 (4.8) 100 (7.7)
  50–59 2 (0.4) 0 2 (0.2)
CS score 32.3 ±  6.4 29.7 ±  5.7 30.7 ±  6.1
Chronotype
  Evening type (≤26) 86 (17.9) 219 (27.0) 305 (23.6)
  Intermediate type (27–40) 346 (71.9) 565 (69.6) 911 (70.5)
  Morning type (≥41) 49 (10.2) 28 (3.4) 77 (6.0)

Values are presented as number (%) or mean±SD.
CS, Composite Scale of Morningness.

Table 3. Individual SNP association analysis using simple regression

Model 1 Model 2
Coefficient SE t p-value Coefficient SE t p-value

BHLHB2 rs6442925CT 0.332 0.618 0.538 0.590 0.598 0.588 1.016 0.310
BHLHB2 rs2137947CT 0.052 0.255 0.205 0.838 0.033 0.243 0.134 0.893
CLOCK rs1801260CT 0.096 0.401 0.24 0.811 0.220 0.382 0.576 0.565
CLOCK rs3805148AC 0.181 0.248 0.731 0.465 0.214 0.236 0.905 0.366
CLOCK rs12504300CG 0.160 0.247 0.646 0.518 0.192 0.235 0.816 0.414
CLOCK rs4864542CG 0.160 0.247 0.646 0.518 0.192 0.235 0.816 0.414
CLOCK rs12649507AG 0.121 0.247 0.491 0.623 0.159 0.235 0.679 0.497
CSNK1E rs135745CG –0.262 0.319 –0.822 0.411 –0.307 0.304 –1.009 0.313
CSNK1E rs1534891CT 0.550 0.403 1.364 0.173 0.357 0.384 0.929 0.353
CSNK1E rs2075984AC –0.159 0.238 –0.666 0.506 –0.121 0.227 –0.534 0.594
NR1D1 rs2314339CT –0.229 0.238 –0.964 0.335 –0.259 0.226 –1.146 0.252
NR1D1 rs2269457AG 0.025 0.236 0.105 0.916 0.017 0.224 0.076 0.940
PER2 rs2304672CG –0.158 0.512 –0.308 0.758 0.000 0.488 0.000 1.000
PER2 rs2304669AG –0.311 0.371 –0.837 0.403 –0.172 0.353 –0.485 0.627
PER3 rs228669AG 0.482 0.266 1.809 0.071 0.4 0.254 1.577 0.115
TIMELESS rs4630333AG  –0.127 0.241 –0.527 0.598 –0.176 0.23 –0.768 0.443
TIMELESS rs1082214AG  –0.372 0.433 –0.859 0.390 –0.266 0.413 –0.645 0.519

SNP, single nucleotide polymorphism; SE, standard error; Model 1, model without adjustment for age and sex; Model 2, with adjustment for age and sex.

Table 4. Haplotype association analysis

Gene No. of SNPs No. of haplotypes F(df) p-value
BHLHB2 2 4 0.124(3) 0.946
CLOCK 5 3 0.196(2) 0.822
CSNK1E 3 5 2.080(4) 0.082
NRID 2 4 0.513(3) 0.674
PER2 2 3 0.423(2) 0.655
TIMELESS 2 3 0.378(2) 0.685

No. of haplotypes indicates the number of common haplotypes (minor 
haplotype frequency ≥ 0.01).
SNP, single nucleotide polymorphism.

was difficult to conclude that there were clinically significant gene-
gene interaction effects on chronotype based on our results, since 
the mean differences in total CS score between genotype combi-
nations were minor. 

Human chronotype is a heritable polygenic trait, and many 
groups have searched for the genes involved in chronotype. Many 
clock genes have been considered as strong candidate genes for 
chronotype because of their biological functions in circadian net-
works. There have been many single-gene association studies to 
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identify genetic factors for chronotype. The first report of an asso-
ciation between chronotype and clock genes was related to the 
3′-untranslated region of the CLOCK gene (rs1801260) [20]. This 
finding was not replicated in other populations [21-23], but was 
replicated in a Japanese population [24]. Multiple other clock 
genes have also been studied. The PER3 gene was shown to be as-
sociated with delayed sleep phase syndrome. The studies thus far 
have focused on a variable number of tandem repeats region locat-
ed in exon 18 of PER3, but the results of association analysis dif-
fered among studies. Specifically, a shorter allele was associated 
with delayed sleep phase syndrome [25]; a longer allele was also 
reportedly associated with delayed sleep phase syndrome [26] and 
was reported to have predictive value in response to sleep loss [27-
29]. PER1 and PER2 were reported to be associated with ad-
vanced sleep phase syndrome in a British population [27,28], but 
not in a Japanese family [30]. Overall, the results were inconsistent 
and sometimes contradictory. Table 6 presents a summary of ge-
netic association findings between clock genes and chronotype. 

There have been several GWASs regarding chronotype in Euro-
pean populations using data from 23andMe and the UK Biobank 
[11-13,15]. There was a great deal of consistency across these stud-
ies, with nine genes identified in two of the three GWASs. Among 
these nine genes, four showed significant hits and were found in all 
three GWASs. Thus far, GWASs have been conducted only in pop-
ulations of European ancestry. Emmanuel and von Schantz report-
ed that six of 41 alleles identified earlier by GWASs in European 
participants (in the genes RGS16, PER2, and AK5, as well as be-
tween the genes APH1A and CA14) were absent from some 
non-European populations. This study underscores the ancestral 
diversity of circadian genetics and suggests that future studies 
should be performed in populations of East Asian ancestry [31]. 

The proteins encoded by various clock genes cooperate physi-
cally with each other and act as transcription factors. Combina-
tions of polymorphisms in these genes may affect phenotype. 
Therefore, combined analysis of the effects of different clock genes 
may be more accurate and more revealing, compared to analyses 
of single genes. A few previous studies examined the effects of 
gene-gene interactions on chronotype. One study in Korean col-
lege students reported a significant interaction for CS score be-
tween CLOCK gene 3111 C/T and GNB3 825 C/T, according to 
regression analysis [32]. Later, the same group reported a genetic 
interaction for eveningness among ARNTL, PER2, and GNB3, ac-
cording to MDR analysis [33]. Another study by Pedrazzoli et al. 
reported that a specific combination of polymorphisms in four 
clock genes was associated with diurnal preferences in a Brazilian 
population [34]. They chose four polymorphisms in four clock 
genes: PER2, PER3, CLOCK, and BMAL1. To the best of our 
knowledge, other than these studies, there have been no further 
analyses of the epistatic effects among clock genes for chronotype. 
Therefore, we attempted to identify gene-gene interactions among 
clock genes for chronotype in this study. We used QMDR to inves-
tigate gene-gene interactions to improve statistical power. We 
avoided subgrouping based on total CS score because grouping 
into morning, intermediate, or evening types could be arbitrary; 
moreover, we could address the quantitative score directly in our 
analysis. Multifactor dimensionality reduction is a common ap-
proach for identification of gene-gene interactions in case-control 
studies [19]. QMDR is an extension of MDR to handle quantita-
tive phenotypes. Instead of comparing the case-control ratio of 
each multi-locus genotype to a fixed threshold as in MDR, QMDR 
compares the mean value of each multi-locus genotype to the 
overall mean [18]. 

Table 5. Summary of QMDR results having more than 1/10 of CVC

CVC Scorea p-valueb

NR1D1 rs2314339CT 3/10 0.753 0.503
TIMELESS rs4630333AG 3/10 0.874 0.274
BHLHB2 rs2137947CT 2/10 0.760 0.492
PER3 rs228669AG 2/10 0.920 0.222
NR1D1 rs2314339, TIMELESS rs4630333 8/10 1.193 0.041
BHLHB2 rs2137947CT, TIMELESS rs4630333 1/10 0.919 0.272
NR1D1 rs2314339CT, PER3 rs228669AG 1/10 1.054 0.117
NR1D1 rs2314339, TIMELESS rs4630333, PER3 rs228669 4/10 1.741 <0.001
CLOCK rs12504300CG, NR1D1 rs2314339CT, TIMELESS rs4630333AG 3/10 0.897 0.303
CSNK1E rs2075984AC, NR1D1 rs2314339CT, TIMELESS rs4630333AG 2/10 0.915 0.277
CSNK1E rs2075984AC, NR1D1 rs2314339CT, PER3 rs228669AG 1/10 0.792 0.495

QMDR, quantitative multifactor dimensionality reduction; CVC, cross-validation consistency.
aAverage testing score.
bEmpirical p-value.
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Table 6. Summary of SNP association findings between clock genes and chronotype

Gene Polymorphism Genetic region Results Population Reference
CLOCK rs1801260 3'-UTR Positive association American [20]

No association British [21]
Positive association Japanese [24]
No association Brazilian [23]
No association Korean [32]
No association British [39]
No association American [44]
No association Italian [45]
No association Korean [33]

ARNTL rs2278749 Intron No associationa Korean [33]
rs7107287 Intron No association Poland [38]

ARNTL2 rs922270 Intron Positive association British [46]
PER1 rs2735611 Coding, synonymous Positive association British [28]
PER2 rs2304672 5'-UTR Positive association Japanese [30]

No association Italian [48]
No association Korean [47]

rs934945 Missense Positive association Korean [47]
Positive association Korean [33]

rs2304671 Coding, synonymous Positive association Japanese [48]
rs35333999 Missense Positive association British & American [49]

PER3 rs57875989 Deletion/insertion Positive association British [25]
(VNTR) Positive association Europeanb [50]

Positive association British [51]
No association British [39]
No association Colombian [41]
No association Norwegian [40]
No association Han Chinese [42]
No association Japanese [43]

TIMELESS rs2291738 Intron Positive association Poland [38]
NR1D1 rs12941497 Intron Positive association Korean [37]
MTNR1B rs4753426 Promoter Positive association Brazilian [52]
GNB3 rs5443 Coding, synonymous Positive association Europeanc [53]

No association Korean [32]
No association Korean [33]

SNP, single nucleotide polymorphism; UTR, untranslated region.
aPositive interaction with rs5443 of GNB3.
bEuropean population in South Africa.
cEuropean population in Sweden.

In particular, gene-gene interactions among NR1D1 rs2314339, 
TIMELESS rs4630333, and PER3 rs228669 were significantly as-
sociated with chronotype in QMDR analyses in the present study. 
These SNPs did not show any associations as individual SNPs or 
haplotypes. NR1D1 (nuclear receptor subfamily 1, group D, mem-
ber 1) is the gene encoding REV-ERBα, located on chromosome 
17q21.3. REV-ERBα suppresses the transcription of BMAL1 
mRNA [35,36], while BMAL1 activates REV-ERBα; this compris-
es a feedback loop of the mammalian circadian oscillator. NR1D1 

has been reported to show an association with chronotype in 
healthy Korean young adults [37]. Kang et al. [37] reported a sig-
nificant association with rs12941497 of NR1D1, but no associa-
tion with rs2314339, which showed significant gene-gene interac-
tions with other SNPs in the present study. The TIMELESS gene 
was reportedly associated with morningness-eveningness in 
healthy university students [38]. The PER3 gene showed conflict-
ing results. Several positive associations for chronotype in Europe-
an populations have been reported. In addition, negative findings 
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were also reported for European populations [39-41] and Asian 
populations [42,43]. The circadian clock system consists mainly of 
transcription-translation feedback loops in the internal timekeeping 
clock. Heterodimers of BMAL (brain and muscle Arnt-like pro-
tein-1) and CLOCK (circadian locomotor output cycles kaput) ac-
tivate the transcription of PER (period) and CRY (cryptochrome) 
genes. CRY and PER suppress transcriptional activity of BMAL1/
CLOCK [54,55]. Because NR1D1 is related to BMAL1 and PER3 
was reported to show a strong genetic interaction with BMAL1, our 
main finding supports this hypothesis. Unfortunately, no biological 
mechanism has been reported for chronotype that includes positive 
gene-gene interactions of all three genes identified in this study. 
Further studies are needed to understand the complicated biologi-
cal molecular network of circadian clocks in humans. 

Consistent and clear phenotyping is critical when performing 
genetic studies. We used CS score as a proxy for actual human di-
urnal preference. However, it evaluates both diurnal preference 
and sleep homeostasis. There are many ways to determine the tim-
ing of the circadian system (e.g., core body temperature monitor-
ing, dim light melatonin onset, and actigraphy- or diary-based 
midpoint of sleep); self-reported diurnal preference is only a proxy 
method. Most GWASs have assessed chronotype using only a sin-
gle question, such as “Are you naturally a night person or a morn-
ing person?” Non-precise phenotyping can produce unreliable sig-
nificant findings that are unlikely to be replicated in subsequent 
studies [56]. Therefore, future phenotyping should include stan-
dardized self-reporting, clinical interviews, or objective assessment 
of sleep-wake periodicity, such as actigraphy. It is important to vali-
date commonly used self-reported items. Comparisons between 
self-reported items and biological markers of circadian rhythms 
are needed to determine which questions are most closely associ-
ated with endogenous processes [14]. 

This study had some limitations that must be considered when 
interpreting our results. First, this study included only ethnically 
Korean individuals. Therefore, caution is needed when generaliz-
ing our results to other populations. As suggested in previous stud-
ies, chronotype and genes for chronotype are likely to differ ac-
cording to ethnicity and/or between populations. Therefore, this 
study in a Korean population was necessary. Second, our partici-
pants were relatively young, with a mean age of 25 years. Because 
chronotype is affected by age, our results cannot be applied to oth-
er age groups. Third, because of resource limitations, we could in-
clude only 17 SNPs of seven circadian genes. Therefore, our results 
represent only a subset of the real-world epistatic interactions 
among clock genes. There are likely to be more complicated gene-
gene interactions among circadian genes, as well as epistatic inter-
actions between circadian genes and genes of other biological sys-

tems, which are directly and indirectly related to the circadian sys-
tem. 

We could not conclude that clock genes play a critical role in de-
termining chronotype, although QMDR suggested significant 
gene-gene interactions. Further studies are needed to investigate 
gene-gene interactions of additional clock genes, especially with 
respect to SNPs that repeatedly show significant associations in 
multiple GWASs and studies in populations other than those of 
European ancestry. 
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