Active Immunization Study of Colon Cancer Derived 1-8D Peptide in HHD Mice

  • Jung, Hun-Soon (School of Life and Food Sciences, Handong Global University) ;
  • Ahn, In-Sook (School of Life and Food Sciences, Handong Global University) ;
  • Do, Hyung-Ki (School of Life and Food Sciences, Handong Global University) ;
  • Lemonnier, Francois A. (AIDS-retrovirus Department, Antiviral Cellular Unit, Pasteur Institute) ;
  • Song, Kuk-Hyun (Department of the General Surgery, Handong Global University Sunlin Hospital) ;
  • Do, Myoung-Sool (School of Life and Food Sciences, Handong Global University)
  • Published : 2005.09.30

Abstract

Background: 1-8D gene is a member of human 1-8 interferon inducible gene family and was shown to be overexpressed in fresh colon cancer tissues. Three peptides 1-6, 3-5 and 3-7 derived from human 1-8D gene were shown to have immunogenicity against colon cancer. Methods: To study tumor immunotherapy, of three peptides we established an active immunization model using HHD mice. $D^{b-/-}{\times}{\beta}2$ microglobulin $({\beta}2m)$ null mice transgenic for a chimeric HLA-$A2.1/D^{b-}\;{\beta}2m$ single chain (HHD mice) were challenged with B16/HHD/1-8D tumor cells and were immunized with irradiated peptide-loaded RMA- S/HHD/B7.1 transfectants. In therapy model tumor growth was retarded in HHD mice that were injected with 3-5 peptide-loaded RMA-S/HHD/B7.1. In survival test vaccination with 1-8D-derived peptide protects HHD mice from tumor progression after tumor challenge. Results: These studies show that peptide 3-5 derived from 1-8D gene can be the most effective candidate for the vaccine of immunotherapy against colon cancer and highlight 1-8D gene as putative colon carcinoma associated antigens. Conclusion: We demonstrated that RMA-S/HHD/ B7.1 loaded with 1-8D peptides, especially 3-5, immunization generates potent antitumor immunity against tumor cells in HHD mice and designed active immunization as proper immunotherapeutic protocols.

Keywords

References

  1. Kerr D: Clinical development of gene therapy for colore cancer. Nat Rev Cancer 3;615-622, 2003 https://doi.org/10.1038/nrc1147
  2. Gimmi C, Morrison BW, Mainorice BA. Gribben JG, Bo siotis VA. Freeman GJ, Park SY, Watanabe M, Gong Hayes DF, Kufe DW, Nadler LM: Breast cancer associat antigen DF3/MUC-1 induces apoptosis of activated hum T cells. Nat Med 2;1367-1370, 1999 https://doi.org/10.1038/nm1296-1367
  3. Zhang L, Zhou W, Velculescu VE, Kern SE, Hruban R Hamilton SR, Vogelstein B, Kinzler KW: Gene express profiles in normal and cancer cells. Science 276;1268-127 1997 https://doi.org/10.1126/science.276.5316.1268
  4. Pascolo S, Bervas N, Ure JM, Smith AG, Lemonnier F Perarnau B: HLA-A2.1-restricted education and cytoly activity of CD8 (+) T lymphocytes from beta 2 microglob (beta2 m) HLA-A2.1 mono chain transgenic H-2Db beta 2 double knockout mice. J Exp Med 185;2043-2051, 1997 https://doi.org/10.1084/jem.185.12.2043
  5. Firat H, Garcia-Pons F, Tourdot S, Pascolo S, Scardino Garcia Z, Michel ML, Jack RW, Jung G, Kosmatopoulos Mateo L, Suhrbier A, Lemonnier FA, Langlade-Demoyen H-2 class I knockout, HLA-A2.1-transgenic mice: a versa animal model for preclinical evaluation of antitumor im notheraoeutic strategies. Eur J Immunol 29;3112-3121, 1999 https://doi.org/10.1002/(SICI)1521-4141(199910)29:10<3112::AID-IMMU3112>3.0.CO;2-Q
  6. Jung HS, Ahn IS, Do HK, Lemonnier FA, Tirosh B, T hoval E, Vadai E, Eisenbach L, Do MS: Adoptive Trans of Colon Cancer Derived Peptide-specific CD8 + T Cells HHD Mice. Immune Netw 4;31-37, 2004 https://doi.org/10.4110/in.2004.4.1.31
  7. Lewin AR, Reid LE, McMahon M, Stark GR, Kerr 1M: M ecular analysis of a human interferon-inducible gene family. Eur J Biochem 199;417-423, 1991 https://doi.org/10.1111/j.1432-1033.1991.tb16139.x
  8. Livak KJ, Schmittzen TD: Analysis of relative gene exp ssion data using real-time quantitative PCR and the 2(-De Delta C(T)) method. Methods 25;402-408, 2001 https://doi.org/10.1006/meth.2001.1262
  9. Brinster C, Muguet S, Lone YC, Boucreux D, Renard Fournillier A, Lemonnier F, Inchauspe G: Different hepa C virus nonstructural protein 3 (Ns3)-DNA-expressing v cines induce in HLA-A2.1 transgenic mice stable cytoto T lymphocytes that target one major epitope. Hepatology 34;1206-1217, 2001 https://doi.org/10.1053/jhep.2001.29304
  10. Firat H, Tourdot S, Ureta-Vidal A, Scardino A, Suhrbie Buseyne F, Riviere Y, Danos O, Michel ML, Kosrnatopou K, Lemonnier FA: Design of a polyepitope construct for induction of HLA-A0201-restricted HIV 1-specific CTL sponses using HLA-A*0201 transgenic, H-2 class I KO mice. Eur J Immunol 10;3064-3074, 2001
  11. Scardino A, Alves P, Gross DA, Tourdot S, Graff-Dub S, Angevin E, Firat H, Chouaib S, Lemonnier F, Nadler L Cardoso AA, Kosmatopoulos K: Identification of HER-neu immunogenic epitopes presented by renal cell carcino and other human epithelial tumors. Eur J Immunol 11;32 3270, 2001
  12. Carmon L, Bobilev-Priel I, Brenner B, Bobilev D, Paz A, B Haim E, Tirosh B, Klein T, Fridkin M, Lemonnier F, Tze val E, Eisenbach L Characterization of novel breast carcin rna-associated BA46-derived oeptides in HLA-A2.1/D(b)-$\beta$ m transgenic mice. J Clin Invest 110;453-462, 2002
  13. Graff-Dubois S, Faure O, Gross DA, Alves P, Scardino Chouaib S, Lemonnier FA, Kosmatopoulos K: Generation CTL recognizing an HLA-A*0201-restricted epitope sha by MAGEA1,-A2, -A3, -A4, -A6, -A10, and -A12 tumor a tigens: implication in a broad-spectrum tumor immunot rapy. J Immunol 169;575-580, 2002
  14. Passoni L, Scardino A, Bertazzoli C, Gallo B, Coluccia A Lemonnier FA, Kosmatopoulos K, Gambacorti-Passerini ALK as a novel lymphoma-associated tumor antigen: ident cation of 2 HLA-A2.1-restricted CD8 + T-cell epitopes. Blood 99;2100-2106, 2002 https://doi.org/10.1182/blood.V99.6.2100
  15. Scardino A, Gross DA, Alves P, Schultze JL. Graff-Dub S, Faure O, Tourdot S, Chouaib S, Nadler LM, Lemonn FA, Vonderheide RH, Cardoso AA, Kosmatopoulos HER-2/neu and hTERT cryptic epitopes as novel targets broad spectrum tumor immunotherapy. J Immunol 168;59 5906, 2002
  16. Celluzzi CM, Mavordomo JI, Storkus WJ, Lotze MT, LD Jr: Peptide-pulsed dendritic cells induce antigen-speci CTL-mediated protective tumor immunity. J Exp Med 183; 283-287, 1996 https://doi.org/10.1084/jem.183.1.283
  17. Paglia P, Chiodoni C, Rodolfo M, Colombo MP: Murine dritic cells loaded in vitro with soluble protein prime cyto T lymphocytes against tumor antigen in vivo. J Exp Med 183;317-322, 1996 https://doi.org/10.1084/jem.183.1.317
  18. Young JW, Inaba K: Dendritic cells as adjuvants for cl I major histocompatibility complex-restricted antitumor munity. J Exp Med 183;7-11, 1996 https://doi.org/10.1084/jem.183.1.7
  19. Nestle FO, Alijagic S, Gilliet M, Sun Y, Grabbe S, Dum R, Burg G, Schadendorf D: Vaccination of melanoma oa ents with peptide- or tumor lysate-pulsed dendritic cells. Nat Med 4;328-332, 1998 https://doi.org/10.1038/nm0398-328
  20. Thurner B, Haendle L Roder C, Dieckmann D, Keikavo P, Jonuleit H, Bender A, Maczek C, Schreiner D, von Driesch P, Brocker EB, Steinman RM, Enk A, Kampgen Schuler G: Vaccination with mage-3A1 peptide-pulsed ma re, monocyte-derived dendritic cells expands specific cy toxic T cells and induces regression of some metastases advanced stage IV melanoma. J Exp Med 190;1669-167 1999 https://doi.org/10.1084/jem.190.11.1669
  21. Bellone M, Cantarella D, Castiglioni P, Crosti MC, Ronc A, Moro M, Garancini MP, Casorati G, Dellabona P: R vance of the tumor antigen in the validation of three vac nation strategies for melanoma. J Immunol 165;2651-26 2000
  22. Schreurs MW, Eggert AA, de Boer AJ, Vissers JL, van H T, Offringa R, Figdor CG, Adema GJ: Dendritic cells br tolerance and induce protective immunity against a mela cyte differentiation antigen in an autologous melanoma model. Cancer Res 60;6995-7001, 2000