• 제목/요약/키워드: -homogeneous F-space

검색결과 25건 처리시간 0.024초

HOMOGENEOUS FUNCTION AND ITS APPLICATION IN A FINSLER SPACE

  • Kim, Byung-Doo;Choi, Eun-Seo
    • 대한수학회논문집
    • /
    • 제14권2호
    • /
    • pp.385-392
    • /
    • 1999
  • We deal with a differential equation which is constructed from homogeneous function, and its geometrical meaning in a Finsler space. Moreover, were prove that a locally Minkowski space satisfying a differential equation F\ulcorner=0 is flat-parallel.

  • PDF

ADDITIVE ρ-FUNCTIONAL INEQUALITIES IN β-HOMOGENEOUS F-SPACES

  • LEE, HARIN;CHA, JAE YOUNG;CHO, MIN WOO;KWON, MYUNGJUN
    • 한국수학교육학회지시리즈B:순수및응용수학
    • /
    • 제23권3호
    • /
    • pp.319-328
    • /
    • 2016
  • In this paper, we solve the additive ρ-functional inequalities (0.1) ||f(2x-y)+f(y-x)-f(x)|| $\leq$ ||${\rho}(f(x+y)-f(x)-f(y))$||, where ρ is a fixed complex number with |ρ| < 1, and (0.2) ||f(x+y)-f(x)-f(y)|| $\leq$ ||${\rho}(f(2x-y)-f(y-x)-f(x))$||, where ρ is a fixed complex number with |ρ| < $\frac{1}{2}$. Using the direct method, we prove the Hyers-Ulam stability of the additive ρ-functional inequalities (0.1) and (0.2) in β-homogeneous F-spaces.

ADDITIVE ρ-FUNCTIONAL EQUATIONS IN β-HOMOGENEOUS F-SPACES

  • Shim, EunHwa
    • 한국수학교육학회지시리즈B:순수및응용수학
    • /
    • 제24권4호
    • /
    • pp.243-251
    • /
    • 2017
  • In this paper, we solve the additive ${\rho}-functional$ equations (0.1) $f(x+y)+f(x-y)-2f(x)={\rho}(2f(\frac{x+y}{2})+f(x-y)-2f(x))$, and (0.2) $2f(\frac{x+y}{2})+f(x-y)-2f(x)={\rho}(f(x+y)+f(x-y)-2f(x))$, where ${\rho}$ is a fixed (complex) number with ${\rho}{\neq}1$, Using the direct method, we prove the Hyers-Ulam stability of the additive ${\rho}-functional$ equations (0.1) and (0.2) in ${\beta}-homogeneous$ (complex) F-spaces.

ON THE TANGENT SPACE OF A WEIGHTED HOMOGENEOUS PLANE CURVE SINGULARITY

  • Canon, Mario Moran;Sebag, Julien
    • 대한수학회지
    • /
    • 제57권1호
    • /
    • pp.145-169
    • /
    • 2020
  • Let k be a field of characteristic 0. Let ${\mathfrak{C}}=Spec(k[x,y]/{\langle}f{\rangle})$ be a weighted homogeneous plane curve singularity with tangent space ${\pi}_{\mathfrak{C}}:T_{{\mathfrak{C}}/k}{\rightarrow}{\mathfrak{C}$. In this article, we study, from a computational point of view, the Zariski closure ${\mathfrak{G}}({\mathfrak{C}})$ of the set of the 1-jets on ${\mathfrak{C}}$ which define formal solutions (in F[[t]]2 for field extensions F of k) of the equation f = 0. We produce Groebner bases of the ideal ${\mathcal{N}}_1({\mathfrak{C}})$ defining ${\mathfrak{G}}({\mathfrak{C}})$ as a reduced closed subscheme of $T_{{\mathfrak{C}}/k}$ and obtain applications in terms of logarithmic differential operators (in the plane) along ${\mathfrak{C}}$.

A GENERALIZATION OF A RESULT OF CHOA ON ANALYTIC FUNCTIONS WITH HADAMARD GAPS

  • Stevic Stevo
    • 대한수학회지
    • /
    • 제43권3호
    • /
    • pp.579-591
    • /
    • 2006
  • In this paper we obtain a sufficient and necessary condition for an analytic function f on the unit ball B with Hadamard gaps, that is, for $f(z)\;=\;{\sum}^{\infty}_{k=1}\;P_{nk}(z)$ (the homogeneous polynomial expansion of f) satisfying $n_{k+1}/n_{k}{\ge}{\lambda}>1$ for all $k\;{\in}\;N$, to belong to the weighted Bergman space $$A^p_{\alpha}(B)\;=\;\{f{\mid}{\int}_{B}{\mid}f(z){\mid}^{p}(1-{\mid}z{\mid}^2)^{\alpha}dV(z) < {\infty},\;f{\in}H(B)\}$$. We find a growth estimate for the integral mean $$\({\int}_{{\partial}B}{\mid}f(r{\zeta}){\mid}^pd{\sigma}({\zeta})\)^{1/p}$$, and an estimate for the point evaluations in this class of functions. Similar results on the mixed norm space $H_{p,q,{\alpha}$(B) and weighted Bergman space on polydisc $A^p_{^{\to}_{\alpha}}(U^n)$ are also given.

WEKGHTED WEAK TYPE ESTIMATES FOR CERTAIN MAXIMAL OPERATORS IN SPACES OF HOMOGENEOUS TYPE

  • Yoo, Yoon-Jae
    • 대한수학회보
    • /
    • 제36권1호
    • /
    • pp.25-31
    • /
    • 1999
  • Let $\nu$ be a positive Borel measure on a space of homogeneous type (X, d, $\mu$), satisfying the doubling property. A condition on a weight $\omega$ for whixh a maximal operator $M\nu f$(x) defined by M$mu$f(x)=supr>0{{{{ { 1} over {ν(B(x,r)) } INT _{ B(x,r)} │f(y)│d mu (y)}}}}, is of weak type (p,p) with respect to (ν, $omega$), is that there exists a constant C such that C $omega$(y) for a.e. y$\in$B(x, r) if p=1, and {{{{( { 1} over { upsilon (B(x,r) } INT _{ B(x,r)}omega(y) ^ (-1/p-1) d mu (y))^(p-1)}}}} C, if 1$infty$.

  • PDF

On the harris ergodicity of a class of markov processes

  • Lee, Chan-Ho
    • 대한수학회지
    • /
    • 제32권1호
    • /
    • pp.85-92
    • /
    • 1995
  • Supppose ${X_n}$ is a Markov process taking values in some arbitrary state space $(S, F)$ with temporarily homogeneous transition probabilities $p^n(x, A) = P(X_n \in $A\mid$X_0 = x), x \in S, A \in F$. Write $p(x, A) for p^1(x, A)$.

  • PDF

THE EXISTENCE OF SOLUTIONS OF LINEAR MULTIVARIABLE SYSTEMS IN DESCRIPTOR FROM FORM

  • AASARAAI, A.
    • 호남수학학술지
    • /
    • 제24권1호
    • /
    • pp.35-41
    • /
    • 2002
  • The solutions of a homogeneous system in state space form $\dot{x}=Ax$ are to the form $x=e^{At}x_0$ and the solutions of an inhomogeneous system $\dot{x}=Ax(t)+f(t)$ are to the form $x=e^{At}x_0+{{\int}_0^t}\;e^{A(t-{\tau})}f({\tau})d{\tau}$. In this note we show that the solution of descriptor systems under some conditions exists, and is unique, moreover it is interesting to know the solutions of descriptor system are schematically like the solutions as in the state space form. Also we will give some algorithms to compute these solutions.

  • PDF

ON PROJECTIVELY FLAT FINSLER SPACE WITH AN APPROXIMATE INFINITE SERIES (α,β)-METRIC

  • Lee, Il-Yong
    • East Asian mathematical journal
    • /
    • 제28권1호
    • /
    • pp.25-36
    • /
    • 2012
  • We introduced a Finsler space $F^n$ with an approximate infinite series (${\alpha},{\beta}$-metric $L({\alpha},{\beta})={\beta}\sum\limits_{k=0}^r\(\frac{\alpha}{\beta}\)^k$, where ${\alpha}<{\beta}$ and investigated it with respect to Berwald space ([12]) and Douglas space ([13]). The present paper is devoted to finding the condition that is projectively at on a Finsler space $F^n$ with an approximate infinite series (${\alpha},{\beta}$)-metric above.

IMPROVED STATIONARY $L_p$-APPROXIMATION ORDER OF INTERPOLATION BY CONDITIONALLY POSITIVE DEFINITE FUNCTIONS

  • Yoon, Jung-Ho
    • Journal of applied mathematics & informatics
    • /
    • 제14권1_2호
    • /
    • pp.365-376
    • /
    • 2004
  • The purpose of this study is to show that the accuracy of the interpolation method can be at least doubled when additional smoothness requirements and boundary conditions are met. In particular, as a basis function, we are interested in using a conditionally positive definite function $\Phi$ whose generalized Fourier transform is of the form $\Phi(\theta)\;=\;F(\theta)$\mid$\theta$\mid$^{-2m}$ with a bounded function F > 0.