ADDITIVE ρ -FUNCTIONAL EQUATIONS IN β -HOMOGENEOUS F-SPACES

EunHwa Shim

Abstract. In this paper, we solve the additive ρ -functional equations

$$(0.1) f(x+y) + f(x-y) - 2f(x) = \rho \left(2f\left(\frac{x+y}{2}\right) + f(x-y) - 2f(x) \right),$$

and

$$(0.2) 2f\left(\frac{x+y}{2}\right) + f(x-y) - 2f(x) = \rho(f(x+y) + f(x-y) - 2f(x)),$$

where ρ is a fixed (complex) number with $\rho \neq 1$,

Using the direct method, we prove the Hyers-Ulam stability of the additive ρ -functional equations (0.1) and (0.2) in β -homogeneous (complex) F-spaces.

1. Introduction and Preliminaries

The stability problem of functional equations originated from a question of Ulam [23] concerning the stability of group homomorphisms.

The functional equation f(x+y) = f(x) + f(y) is called the Cauchy equation. In particular, every solution of the Cauchy equation is said to be an additive mapping. Hyers [8] gave a first affirmative partial answer to the question of Ulam for Banach spaces. Hyers' Theorem was generalized by Aoki [2] for additive mappings and by Rassias [14] for linear mappings by considering an unbounded Cauchy difference. A generalization of the Rassias theorem was obtained by Găvruta [7] by replacing the unbounded Cauchy difference by a general control function in the spirit of Rassias' approach. The stability of quadratic functional equation was proved by Skof [22] for mappings $f: E_1 \to E_2$, where E_1 is a normed space and E_2 is a Banach space. Cholewa [5] noticed that the theorem of Skof is still true if the relevant domain E_1 is replaced by an Abelian group. The stability problems of various functional

Received by the editors November 07, 2017. Accepted November 20, 2017.

²⁰¹⁰ Mathematics Subject Classification. Primary 39B62, 39B72, 39B52, 39B82.

Key words and phrases. Hyers-Ulam stability, β -homogeneous F-space, additive ρ -functional equation.

244 Eunhwa Shim

equations have been extensively investigated by a number of authors (see [1, 3, 4, 6, 9, 10, 11, 12, 13, 15, 17, 18, 19, 20, 21, 24, 25]).

Definition 1.1. Let X be a linear space. A nonnegative valued function $\|\cdot\|$ is an F-norm if it satisfies the following conditions:

```
(FN<sub>1</sub>) ||x|| = 0 if and only if x = 0;

(FN<sub>2</sub>) ||\lambda x|| = ||x|| for all x \in X and all \lambda with |\lambda| = 1;

(FN<sub>3</sub>) ||x + y|| \le ||x|| + ||y|| for all x, y \in X;
```

(FN₄) $\|\lambda_n x\| \to 0$ provided $\lambda_n \to 0$;

(FN₅) $\|\lambda x_n\| \to 0$ provided $\|x_n\| \to 0$.

Then $(X, \|\cdot\|)$ is called an F^* -space.

A sequence $\{x_n\}$ is called a Cauchy sequence if, for a given $\epsilon > 0$, there is a nautral number N such that $||x_n - x_m|| \le \epsilon$ for all $n, m \ge N$. A sequence $\{x_n\}$ is called a convergernt sequence if, for a given $\epsilon > 0$, there are a nautral number N and $x_0 \in X$ such that $||x_n - x_0|| \le \epsilon$ for all $n \ge N$. If every Cauchy sequence converges, then the space is called *complete*. An F-space is a complete F^* -space.

An F-norm is called β -homogeneous $(\beta > 0)$ if $||tx|| = |t|^{\beta}||x||$ for all $x \in X$ and all $t \in \mathbb{C}$ (see [16]).

In Section 2, we solve the additive ρ -functional equation (0.1) and prove the Hyers-Ulam stability of the additive ρ -functional equation (0.1) in β_2 -homogeneous (complex) F-spaces.

In Section 3, we solve the additive ρ -functional equation (0.2) and prove the Hyers-Ulam stability of the additive ρ -functional equation (0.2) in β_2 -homogeneous (complex) F-spaces.

Throughout this paper, let β_1, β_2 be positive real numbers with $\beta_1 \leq 1$ and $\beta_2 \leq 1$. Assume that X is a β_1 -homogeneous (complex) normed space with norm $\|\cdot\|$ and that Y is a β_2 -homogeneous (complex) F-space with norm $\|\cdot\|$. Assume that ρ is a (complex) number with $\rho \neq 1$.

2. Additive ρ -functional Equation (0.1) in β -homogeneous (Complex) F-spaces

We solve and investigate the additive ρ -functional equation (0.1) in (complex) normed spaces.

Lemma 2.1. If a mapping $f: X \to Y$ satisfies f(0) = 0 and

$$(2.1) \ f(x+y) + f(x-y) - 2f(x) = \rho \left(2f\left(\frac{x+y}{2}\right) + f(x-y) - 2f(x) \right)$$

for all $x, y \in X$, then $f: X \to Y$ is additive.

Proof. Assume that $f: X \to Y$ satisfies (2.1).

Letting y = x in (2.1), we get f(2x) - 2f(x) = 0 and so f(2x) = 2f(x) for all $x \in X$. Thus

$$f\left(\frac{x}{2}\right) = \frac{1}{2}f(x)$$

for all $x \in X$.

It follows from (2.1) and (2.2) that

$$f(x+y) + f(x-y) - 2f(x) = \rho \left(2f\left(\frac{x+y}{2}\right) + f(x-y) - 2f(x) \right)$$
$$= \rho (f(x+y) + f(x-y) - 2f(x))$$

and so f(x+y)+f(x-y)=2f(x) for all $x,y\in X$. It is easy to show that f is additive.

We prove the Hyers-Ulam stability of the additive ρ -functional equation (2.1) in β -homogeneous (complex) F-spaces.

Theorem 2.2. Let $r > \frac{\beta_2}{\beta_1}$ and θ be nonnegative real numbers and let $f: X \to Y$ be a mapping satisfying f(0) = 0 and

$$\left\| f(x+y) + f(x-y) - 2f(x) - \rho \left(2f\left(\frac{x+y}{2}\right) + f(x-y) - 2f(x) \right) \right\|$$

$$(2.3) \qquad \leq \theta(\|x\|^r + \|y\|^r)$$

for all $x, y \in X$. Then there exists a unique additive mapping $A: X \to Y$ such that

$$||f(x) - A(x)|| \le \frac{2\theta}{2^{\beta_1 r} - 2^{\beta_2}} ||x||^r$$

for all $x \in X$.

Proof. Letting y = x in (2.3), we get

$$||f(2x) - 2f(x)|| \le 2\theta ||x||^r$$

for all $x \in X$. So

$$\left\| f(x) - 2f\left(\frac{x}{2}\right) \right\| \le \frac{2}{2^{\beta_1 r}} \theta \|x\|^r$$

for all $x \in X$. Hence

$$\left\| 2^{l} f\left(\frac{x}{2^{l}}\right) - 2^{m} f\left(\frac{x}{2^{m}}\right) \right\| \leq \sum_{j=l}^{m-1} \left\| 2^{j} f\left(\frac{x}{2^{j}}\right) - 2^{j+1} f\left(\frac{x}{2^{j+1}}\right) \right\|$$

$$\leq \frac{2}{2^{\beta_{1} r}} \sum_{j=l}^{m-1} \frac{2^{\beta_{2} j}}{2^{\beta_{1} r j}} \theta \|x\|^{r}$$

$$(2.6)$$

for all nonnegative integers m and l with m > l and all $x \in X$. It follows from (2.6) that the sequence $\{2^k f(\frac{x}{2^k})\}$ is Cauchy for all $x \in X$. Since Y is complete, the sequence $\{2^k f(\frac{x}{2^k})\}$ converges. So one can define the mapping $A: X \to Y$ by

$$A(x) := \lim_{k \to \infty} 2^k f\left(\frac{x}{2^k}\right)$$

for all $x \in X$. Moreover, letting l = 0 and passing the limit $m \to \infty$ in (2.6), we get (2.4).

It follows from (2.3) that

$$\begin{aligned} & \left\| A(x+y) + A(x-y) - 2A(x) - \rho \left(2A \left(\frac{x+y}{2} \right) + A(x-y) - 2A(x) \right) \right\| \\ &= \lim_{n \to \infty} \left\| 2^n \left(f \left(\frac{x+y}{2^n} \right) + f \left(\frac{x-y}{2^n} \right) - 2f \left(\frac{x}{2^n} \right) \right. \\ & - \left. \rho \left(2f \left(\frac{x+y}{2^{n+1}} \right) + f \left(\frac{x-y}{2^n} \right) - 2f \left(\frac{x}{2^n} \right) \right) \right\| \le \lim_{n \to \infty} \frac{2^{\beta_2 n}}{2^{\beta_1 r n}} \theta(\|x\|^r + \|y\|^r) = 0 \end{aligned}$$

for all $x, y \in X$. So

$$A(x+y) + A(x-y) - 2A(x) = \rho \left(2A\left(\frac{x+y}{2}\right) + A(x-y) - 2A(x) \right)$$

for all $x, y \in X$. By Lemma 2.1, the mapping $A: X \to Y$ is additive.

Now, let $T: X \to Y$ be another additive mapping satisfying (2.4). Then we have

$$\begin{aligned} \|A(x) - T(x)\| &= \left\| 2^{q} A\left(\frac{x}{2^{q}}\right) - 2^{q} T\left(\frac{x}{2^{q}}\right) \right\| \\ &\leq \left\| 2^{q} A\left(\frac{x}{2^{q}}\right) - 2^{q} f\left(\frac{x}{2^{q}}\right) \right\| + \left\| 2^{q} T\left(\frac{x}{2^{q}}\right) - 2^{q} f\left(\frac{x}{2^{q}}\right) \right\| \\ &\leq \frac{4\theta}{2^{\beta_{1}r} - 2^{\beta_{2}}} \frac{2^{\beta_{2}q}}{2^{\beta_{1}qr}} \|x\|^{r}, \end{aligned}$$

which tends to zero as $q \to \infty$ for all $x \in X$. So we can conclude that A(x) = T(x) for all $x \in X$. This proves the uniqueness of A, as desired.

Theorem 2.3. Let $r < \frac{\beta_2}{\beta_1}$ and θ be nonnegative real numbers and let $f: X \to Y$ be a mapping satisfying f(0) = 0 and (2.3). Then there exists a unique additive

mapping $A: X \to Y$ such that

(2.7)
$$||f(x) - A(x)|| \le \frac{2\theta}{2^{\beta_2} - 2^{\beta_1 r}} ||x||^r$$

for all $x \in X$.

Proof. It follows from (2.5) that

$$\left\| f(x) - \frac{1}{2}f(2x) \right\| \le \frac{2}{2^{\beta_2}}\theta \|x\|^r$$

for all $x \in X$. Hence

$$\left\| \frac{1}{2^{l}} f(2^{l} x) - \frac{1}{2^{m}} f(2^{m} x) \right\| \leq \sum_{j=l}^{m-1} \left\| \frac{1}{2^{j}} f\left(2^{j} x\right) - \frac{1}{2^{j+1}} f\left(2^{j+1} x\right) \right\|$$

$$\leq \frac{2}{2^{\beta_{2}}} \sum_{j=l}^{m-1} \frac{2^{\beta_{1} r j}}{2^{\beta_{2} j}} \theta \|x\|^{r}$$

$$(2.8)$$

for all nonnegative integers m and l with m > l and all $x \in X$. It follows from (2.8) that the sequence $\{\frac{1}{2^n}f(2^nx)\}$ is a Cauchy sequence for all $x \in X$. Since Y is complete, the sequence $\{\frac{1}{2^n}f(2^nx)\}$ converges. So one can define the mapping $A: X \to Y$ by

$$A(x) := \lim_{n \to \infty} \frac{1}{2^n} f(2^n x)$$

for all $x \in X$. Moreover, letting l = 0 and passing the limit $m \to \infty$ in (2.8), we get (2.7).

The rest of the proof is similar to the proof of Theorem 2.2.

3. Additive ρ -functional Equation (0.2) in β -homogeneous (Complex) F-spaces

We solve and investigate the additive ρ -functional equation (0.2) in β -homogeneous (complex) normed spaces.

Lemma 3.1. If a mapping $f: X \to Y$ satisfies

(3.1)
$$2f\left(\frac{x+y}{2}\right) + f(x-y) - 2f(x) = \rho(f(x+y) + f(x-y) - 2f(x))$$

for all $x, y \in X$, then $f: X \to Y$ is additive.

Proof. Assume that $f: X \to Y$ satisfies (3.1).

Letting x = y = 0 in (3.1), we get f(0) = 0.

Letting y = 0 in (3.1), we get $\left\| 2f\left(\frac{x}{2}\right) - f(x) \right\| \leq 0$ and so

$$(3.2) 2f\left(\frac{x}{2}\right) = f(x)$$

for all $x \in X$.

It follows from (3.1) and (3.2) that

$$f(x+y) + f(x-y) - 2f(x) = 2f\left(\frac{x+y}{2}\right) + f(x-y) - 2f(x)$$

= $\rho(f(x+y) + f(x-y) - 2f(x))$

and so f(x+y)+f(x-y)=2f(x) for all $x,y\in X$. It is easy to show that f is additive.

We prove the Hyers-Ulam stability of the additive ρ -functional equation (3.1) in β -homogeneous (complex) F-spaces.

Theorem 3.2. Let $r > \frac{\beta_2}{\beta_1}$ and θ be nonnegative real numbers and let $f: X \to Y$ be a mapping satisfying f(0) = 0 and

$$\left\| 2f\left(\frac{x+y}{2}\right) + f(x-y) - 2f(x) - \rho(f(x+y) + f(x-y) - 2f(x)) \right\|$$

$$\leq \theta(\|x\|^r + \|y\|^r)$$
(3.3)

for all $x, y \in X$. Then there exists a unique additive mapping $A: X \to Y$ such that

(3.4)
$$||f(x) - A(x)|| \le \frac{2^{\beta_1 r} \theta}{2^{\beta_1 r} - 2^{\beta_2}} ||x||^r$$

for all $x \in X$.

Proof. Letting y = 0 in (3.3), we get

(3.5)
$$\left\| f(x) - 2f\left(\frac{x}{2}\right) \right\| = \left\| 2f\left(\frac{x}{2}\right) - f(x) \right\| \le \theta \|x\|^r$$

for all $x \in X$. So

$$\left\| 2^{l} f\left(\frac{x}{2^{l}}\right) - 2^{m} f\left(\frac{x}{2^{m}}\right) \right\| \leq \sum_{j=l}^{m-1} \left\| 2^{j} f\left(\frac{x}{2^{j}}\right) - 2^{j+1} f\left(\frac{x}{2^{j+1}}\right) \right\|$$

$$\leq \sum_{j=l}^{m-1} \frac{2^{\beta_{2}j}}{2^{\beta_{1}rj}} \theta \|x\|^{r}$$

$$(3.6)$$

for all nonnegative integers m and l with m > l and all $x \in X$. It follows from (3.6) that the sequence $\{2^k f(\frac{x}{2^k})\}$ is Cauchy for all $x \in X$. Since Y is complete, the sequence $\{2^k f(\frac{x}{2^k})\}$ converges. So one can define the mapping $A: X \to Y$ by

$$A(x) := \lim_{k \to \infty} 2^k f\left(\frac{x}{2^k}\right)$$

for all $x \in X$. Moreover, letting l = 0 and passing the limit $m \to \infty$ in (3.6), we get (3.4).

The rest of the proof is similar to the proof of Theorem 2.2. \Box

Theorem 3.3. Let $r < \frac{\beta_2}{\beta_1}$ and θ be nonnegative real numbers and let $f: X \to Y$ be an odd mapping satisfying (3.3). Then there exists a unique additive mapping $A: X \to Y$ such that

(3.7)
$$||f(x) - A(x)|| \le \frac{2^{\beta_1 r} \theta}{2^{\beta_2} - 2^{\beta_1 r}} ||x||^r$$

for all $x \in X$.

Proof. It follows from (3.5) that

$$\left\| f(x) - \frac{1}{2}f(2x) \right\| \le \frac{2^{\beta_1 r}}{2^{\beta_2}} \theta \|x\|^r$$

for all $x \in X$. Hence

$$\left\| \frac{1}{2^{l}} f(2^{l} x) - \frac{1}{2^{m}} f(2^{m} x) \right\| \leq \sum_{j=l}^{m-1} \left\| \frac{1}{2^{j}} f\left(2^{j} x\right) - \frac{1}{2^{j+1}} f\left(2^{j+1} x\right) \right\|$$

$$\leq \sum_{j=l+1}^{m} \frac{2^{\beta_{1} r j}}{2^{\beta_{2} j}} \theta \|x\|^{r}$$

$$(3.8)$$

for all nonnegative integers m and l with m > l and all $x \in X$. It follows from (3.8) that the sequence $\{\frac{1}{2^n}f(2^nx)\}$ is a Cauchy sequence for all $x \in X$. Since Y is complete, the sequence $\{\frac{1}{2^n}f(2^nx)\}$ converges. So one can define the mapping $A: X \to Y$ by

$$A(x) := \lim_{n \to \infty} \frac{1}{2^n} f(2^n x)$$

for all $x \in X$. Moreover, letting l = 0 and passing the limit $m \to \infty$ in (3.8), we get (3.7).

The rest of the proof is similar to the proof of Theorem 2.2. \Box

References

- 1. M. Adam: On the stability of some quadratic functional equation. J. Nonlinear Sci. Appl. 4 (2011), 50-59.
- 2. T. Aoki: On the stability of the linear transformation in Banach spaces. J. Math. Soc. Japan 2 (1950), 64-66.
- 3. L. Cădariu, L. Găvruta & P. Găvruta: On the stability of an affine functional equation. J. Nonlinear Sci. Appl. 6 (2013), 60-67.
- 4. A. Chahbi & N. Bounader: On the generalized stability of d'Alembert functional equation. J. Nonlinear Sci. Appl. 6 (2013), 198-204.
- 5. P.W. Cholewa: Remarks on the stability of functional equations. Aequationes Math. **27** (1984), 76-86.
- 6. G.Z. Eskandani & P. Găvruta: Hyers-Ulam-Rassias stability of pexiderized Cauchy functional equation in 2-Banach spaces. J. Nonlinear Sci. Appl. 5 (2012), 459-465.
- 7. P. Găvruta: A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings. J. Math. Anal. Appl. **184** (1994), 431-436.
- 8. D.H. Hyers: On the stability of the linear functional equation. Proc. Natl. Acad. Sci. U.S.A. **27** (1941), 222-224.
- 9. C. Park: Orthogonal stability of a cubic-quartic functional equation. J. Nonlinear Sci. Appl. 5 (2012), 28-36.
- 10. C. Park: Additive ρ -functional inequalities and equations. J. Math. Inequal. 9 (2015), 17-26.
- 11. C. Park: Additive ρ -functional inequalities in non-Archimedean normed spaces. J. Math. Inequal. 9 (2015), 397-407.
- 12. C. Park, K. Ghasemi, S.G. Ghaleh & S. Jang: Approximate *n*-Jordan *-homomorphisms in C*-algebras. J. Comput. Anal. Appl. **15** (2013), 365-368.
- 13. C. Park, A. Najati & S. Jang: Fixed points and fuzzy stability of an additive-quadratic functional equation. J. Comput. Anal. Appl. 15 (2013), 452-462.
- 14. Th.M. Rassias: On the stability of the linear mapping in Banach spaces. Proc. Amer. Math. Soc. **72** (1978), 297-300.
- 15. K. Ravi, E. Thandapani & B.V. Senthil Kumar: Solution and stability of a reciprocal type functional equation in several variables. J. Nonlinear Sci. Appl. 7 (2014), 18-27.
- 16. S. Rolewicz: Metric Linear Spaces. PWN-Polish Scientific Publishers, Warsaw, 1972.
- 17. S. Schin, D. Ki, J. Chang & M. Kim: Random stability of quadratic functional equations: a fixed point approach. J. Nonlinear Sci. Appl. 4 (2011), 37-49.
- 18. S. Shagholi, M. Bavand Savadkouhi & M. Eshaghi Gordji: Nearly ternary cubic homomorphism in ternary Fréchet algebras. J. Comput. Anal. Appl. 13 (2011), 1106-1114.
- 19. S. Shagholi, M. Eshaghi Gordji & M. Bavand Savadkouhi: Stability of ternary quadratic derivation on ternary Banach algebras. J. Comput. Anal. Appl. 13 (2011), 1097-1105.

- 20. D. Shin, C. Park & Sh. Farhadabadi: On the superstability of ternary Jordan C^* -homomorphisms. J. Comput. Anal. Appl. **16** (2014), 964-973.
- 21. D. Shin, C. Park & Sh. Farhadabadi: Stability and superstability of J^* -homomorphisms and J^* -derivations for a generalized Cauchy-Jensen equation. J. Comput. Anal. Appl. 17 (2014), 125-134.
- 22. F. Skof: Propriet locali e approssimazione di operatori. Rend. Sem. Mat. Fis. Milano 53 (1983), 113-129.
- 23. S.M. Ulam: A Collection of the Mathematical Problems. Interscience Publ. New York, 1960.
- 24. C. Zaharia: On the probabilistic stability of the monomial functional equation. J. Non-linear Sci. Appl. 6 (2013), 51-59.
- 25. S. Zolfaghari: Approximation of mixed type functional equations in *p*-Banach spaces. J. Nonlinear Sci. Appl. **3** (2010), 110-122.

DEPARTMENT OF MATHEMATICS, HANYANG UNIVERSITY, SEOUL 04763, REPUBLIC OF KOREA *Email address*: stareun01@nate.com