ADDITIVE ρ-FUNCTIONAL EQUATIONS IN β-HOMOGENEOUS F-SPACES

EunHwa Shim

Abstract. In this paper, we solve the additive ρ-functional equations
$(0.1) f(x+y)+f(x-y)-2 f(x)=\rho\left(2 f\left(\frac{x+y}{2}\right)+f(x-y)-2 f(x)\right)$,
and
(0.2) $2 f\left(\frac{x+y}{2}\right)+f(x-y)-2 f(x)=\rho(f(x+y)+f(x-y)-2 f(x))$,
where ρ is a fixed (complex) number with $\rho \neq 1$,
Using the direct method, we prove the Hyers-Ulam stability of the additive ρ functional equations (0.1) and (0.2) in β-homogeneous (complex) F-spaces.

1. Introduction and Preliminaries

The stability problem of functional equations originated from a question of Ulam [23] concerning the stability of group homomorphisms.

The functional equation $f(x+y)=f(x)+f(y)$ is called the Cauchy equation. In particular, every solution of the Cauchy equation is said to be an additive mapping. Hyers [8] gave a first affirmative partial answer to the question of Ulam for Banach spaces. Hyers' Theorem was generalized by Aoki [2] for additive mappings and by Rassias [14] for linear mappings by considering an unbounded Cauchy difference. A generalization of the Rassias theorem was obtained by Găvruta [7] by replacing the unbounded Cauchy difference by a general control function in the spirit of Rassias' approach. The stability of quadratic functional equation was proved by Skof [22] for mappings $f: E_{1} \rightarrow E_{2}$, where E_{1} is a normed space and E_{2} is a Banach space. Cholewa [5] noticed that the theorem of Skof is still true if the relevant domain E_{1} is replaced by an Abelian group. The stability problems of various functional

[^0]equations have been extensively investigated by a number of authors (see $[1,3,4,6$, $9,10,11,12,13,15,17,18,19,20,21,24,25])$.

Definition 1.1. Let X be a linear space. A nonnegative valued function $\|\cdot\|$ is an F-norm if it satisfies the following conditions:
$\left(\mathrm{FN}_{1}\right)\|x\|=0$ if and only if $x=0$;
$\left(\mathrm{FN}_{2}\right)\|\lambda x\|=\|x\|$ for all $x \in X$ and all λ with $|\lambda|=1$;
$\left(\mathrm{FN}_{3}\right)\|x+y\| \leq\|x\|+\|y\|$ for all $x, y \in X$;
$\left(\mathrm{FN}_{4}\right)\left\|\lambda_{n} x\right\| \rightarrow 0$ provided $\lambda_{n} \rightarrow 0$;
$\left(\mathrm{FN}_{5}\right)\left\|\lambda x_{n}\right\| \rightarrow 0$ provided $\left\|x_{n}\right\| \rightarrow 0$.
Then $(X,\|\cdot\|)$ is called an F^{*}-space.
A sequence $\left\{x_{n}\right\}$ is called a Cauchy sequence if, for a given $\epsilon>0$, there is a nautral number N such that $\left\|x_{n}-x_{m}\right\| \leq \epsilon$ for all $n, m \geq N$. A sequence $\left\{x_{n}\right\}$ is called a convergernt sequence if, for a given $\epsilon>0$, there are a nautral number N and $x_{0} \in X$ such that $\left\|x_{n}-x_{0}\right\| \leq \epsilon$ for all $n \geq N$. If every Cauchy sequence converges, then the space is called complete. An F-space is a complete F^{*}-space.

An F-norm is called β-homogeneous $(\beta>0)$ if $\|t x\|=|t|^{\beta}\|x\|$ for all $x \in X$ and all $t \in \mathbb{C}$ (see [16]).

In Section 2, we solve the additive ρ-functional equation (0.1) and prove the Hyers-Ulam stability of the additive ρ-functional equation (0.1) in β_{2}-homogeneous (complex) F-spaces.

In Section 3, we solve the additive ρ-functional equation (0.2) and prove the Hyers-Ulam stability of the additive ρ-functional equation (0.2) in β_{2}-homogeneous (complex) F-spaces.

Throughout this paper, let β_{1}, β_{2} be positive real numbers with $\beta_{1} \leq 1$ and $\beta_{2} \leq 1$. Assume that X is a β_{1}-homogeneous (complex) normed space with norm $\|\cdot\|$ and that Y is a β_{2}-homogeneous (complex) F-space with norm $\|\cdot\|$. Assume that ρ is a (complex) number with $\rho \neq 1$.

2. Additive ρ-functional Equation (0.1) in β-homogeneous (Complex) F-spaces

We solve and investigate the additive ρ-functional equation (0.1) in (complex) normed spaces.

Lemma 2.1. If a mapping $f: X \rightarrow Y$ satisfies $f(0)=0$ and
(2.1) $f(x+y)+f(x-y)-2 f(x)=\rho\left(2 f\left(\frac{x+y}{2}\right)+f(x-y)-2 f(x)\right)$
for all $x, y \in X$, then $f: X \rightarrow Y$ is additive.
Proof. Assume that $f: X \rightarrow Y$ satisfies (2.1).
Letting $y=x$ in (2.1), we get $f(2 x)-2 f(x)=0$ and so $f(2 x)=2 f(x)$ for all $x \in X$. Thus

$$
\begin{equation*}
f\left(\frac{x}{2}\right)=\frac{1}{2} f(x) \tag{2.2}
\end{equation*}
$$

for all $x \in X$.
It follows from (2.1) and (2.2) that

$$
\begin{aligned}
f(x+y)+f(x-y)-2 f(x) & =\rho\left(2 f\left(\frac{x+y}{2}\right)+f(x-y)-2 f(x)\right) \\
& =\rho(f(x+y)+f(x-y)-2 f(x))
\end{aligned}
$$

and so $f(x+y)+f(x-y)=2 f(x)$ for all $x, y \in X$. It is easy to show that f is additive.

We prove the Hyers-Ulam stability of the additive ρ-functional equation (2.1) in β-homogeneous (complex) F-spaces.

Theorem 2.2. Let $r>\frac{\beta_{2}}{\beta_{1}}$ and θ be nonnegative real numbers and let $f: X \rightarrow Y$ be a mapping satisfying $f(0)=0$ and

$$
\begin{align*}
& \left\|f(x+y)+f(x-y)-2 f(x)-\rho\left(2 f\left(\frac{x+y}{2}\right)+f(x-y)-2 f(x)\right)\right\| \\
& \quad \leq \theta\left(\|x\|^{r}+\|y\|^{r}\right) \tag{2.3}
\end{align*}
$$

for all $x, y \in X$. Then there exists a unique additive mapping $A: X \rightarrow Y$ such that

$$
\begin{equation*}
\|f(x)-A(x)\| \leq \frac{2 \theta}{2^{\beta_{1} r}-2^{\beta_{2}}}\|x\|^{r} \tag{2.4}
\end{equation*}
$$

for all $x \in X$.
Proof. Letting $y=x$ in (2.3), we get

$$
\begin{equation*}
\|f(2 x)-2 f(x)\| \leq 2 \theta\|x\|^{r} \tag{2.5}
\end{equation*}
$$

for all $x \in X$. So

$$
\left\|f(x)-2 f\left(\frac{x}{2}\right)\right\| \leq \frac{2}{2^{\beta_{1} r}} \theta\|x\|^{r}
$$

for all $x \in X$. Hence

$$
\begin{align*}
\left\|2^{l} f\left(\frac{x}{2^{l}}\right)-2^{m} f\left(\frac{x}{2^{m}}\right)\right\| & \leq \sum_{j=l}^{m-1}\left\|2^{j} f\left(\frac{x}{2^{j}}\right)-2^{j+1} f\left(\frac{x}{2^{j+1}}\right)\right\| \\
& \leq \frac{2}{2^{\beta_{1} r}} \sum_{j=l}^{m-1} \frac{2^{\beta_{2} j}}{2^{\beta_{1} r j}} \theta\|x\|^{r} \tag{2.6}
\end{align*}
$$

for all nonnegative integers m and l with $m>l$ and all $x \in X$. It follows from (2.6) that the sequence $\left\{2^{k} f\left(\frac{x}{2^{k}}\right)\right\}$ is Cauchy for all $x \in X$. Since Y is complete, the sequence $\left\{2^{k} f\left(\frac{x}{2^{k}}\right)\right\}$ converges. So one can define the mapping $A: X \rightarrow Y$ by

$$
A(x):=\lim _{k \rightarrow \infty} 2^{k} f\left(\frac{x}{2^{k}}\right)
$$

for all $x \in X$. Moreover, letting $l=0$ and passing the limit $m \rightarrow \infty$ in (2.6), we get (2.4).

It follows from (2.3) that

$$
\begin{aligned}
& \left\|A(x+y)+A(x-y)-2 A(x)-\rho\left(2 A\left(\frac{x+y}{2}\right)+A(x-y)-2 A(x)\right)\right\| \\
& =\lim _{n \rightarrow \infty} \| 2^{n}\left(f\left(\frac{x+y}{2^{n}}\right)+f\left(\frac{x-y}{2^{n}}\right)-2 f\left(\frac{x}{2^{n}}\right)\right. \\
& \left.-\rho\left(2 f\left(\frac{x+y}{2^{n+1}}\right)+f\left(\frac{x-y}{2^{n}}\right)-2 f\left(\frac{x}{2^{n}}\right)\right)\right) \| \leq \lim _{n \rightarrow \infty} \frac{2^{\beta_{2} n}}{2^{\beta_{1} r n}} \theta\left(\|x\|^{r}+\|y\|^{r}\right)=0
\end{aligned}
$$

for all $x, y \in X$. So

$$
A(x+y)+A(x-y)-2 A(x)=\rho\left(2 A\left(\frac{x+y}{2}\right)+A(x-y)-2 A(x)\right)
$$

for all $x, y \in X$. By Lemma 2.1, the mapping $A: X \rightarrow Y$ is additive.
Now, let $T: X \rightarrow Y$ be another additive mapping satisfying (2.4). Then we have

$$
\begin{aligned}
& \|A(x)-T(x)\|=\left\|2^{q} A\left(\frac{x}{2^{q}}\right)-2^{q} T\left(\frac{x}{2^{q}}\right)\right\| \\
& \quad \leq\left\|2^{q} A\left(\frac{x}{2^{q}}\right)-2^{q} f\left(\frac{x}{2^{q}}\right)\right\|+\left\|2^{q} T\left(\frac{x}{2^{q}}\right)-2^{q} f\left(\frac{x}{2^{q}}\right)\right\| \\
& \quad \leq \frac{4 \theta}{2^{\beta_{1} r}-2^{\beta_{2}}} \frac{2^{\beta_{2} q}}{2^{\beta_{1} q r}}\|x\|^{r},
\end{aligned}
$$

which tends to zero as $q \rightarrow \infty$ for all $x \in X$. So we can conclude that $A(x)=T(x)$ for all $x \in X$. This proves the uniqueness of A, as desired.

Theorem 2.3. Let $r<\frac{\beta_{2}}{\beta_{1}}$ and θ be nonnegative real numbers and let $f: X \rightarrow Y$ be a mapping satisfying $f(0)=0$ and (2.3). Then there exists a unique additive
mapping $A: X \rightarrow Y$ such that

$$
\begin{equation*}
\|f(x)-A(x)\| \leq \frac{2 \theta}{2^{\beta_{2}}-2^{\beta_{1} r}}\|x\|^{r} \tag{2.7}
\end{equation*}
$$

for all $x \in X$.
Proof. It follows from (2.5) that

$$
\left\|f(x)-\frac{1}{2} f(2 x)\right\| \leq \frac{2}{2^{\beta_{2}}} \theta\|x\|^{r}
$$

for all $x \in X$. Hence

$$
\begin{align*}
\left\|\frac{1}{2^{l}} f\left(2^{l} x\right)-\frac{1}{2^{m}} f\left(2^{m} x\right)\right\| & \leq \sum_{j=l}^{m-1}\left\|\frac{1}{2^{j}} f\left(2^{j} x\right)-\frac{1}{2^{j+1}} f\left(2^{j+1} x\right)\right\| \\
& \leq \frac{2}{2^{\beta_{2}}} \sum_{j=l}^{m-1} \frac{2^{\beta_{1} r j}}{2^{\beta_{2} j}} \theta\|x\|^{r} \tag{2.8}
\end{align*}
$$

for all nonnegative integers m and l with $m>l$ and all $x \in X$. It follows from (2.8) that the sequence $\left\{\frac{1}{2^{n}} f\left(2^{n} x\right)\right\}$ is a Cauchy sequence for all $x \in X$. Since Y is complete, the sequence $\left\{\frac{1}{2^{n}} f\left(2^{n} x\right)\right\}$ converges. So one can define the mapping $A: X \rightarrow Y$ by

$$
A(x):=\lim _{n \rightarrow \infty} \frac{1}{2^{n}} f\left(2^{n} x\right)
$$

for all $x \in X$. Moreover, letting $l=0$ and passing the limit $m \rightarrow \infty$ in (2.8), we get (2.7).

The rest of the proof is similar to the proof of Theorem 2.2.

3. Additive ρ-functional Equation (0.2) in β-homogeneous (Complex) F-spaces

We solve and investigate the additive ρ-functional equation (0.2) in β-homogeneous (complex) normed spaces.

Lemma 3.1. If a mapping $f: X \rightarrow Y$ satisfies
(3.1) $2 f\left(\frac{x+y}{2}\right)+f(x-y)-2 f(x)=\rho(f(x+y)+f(x-y)-2 f(x))$
for all $x, y \in X$, then $f: X \rightarrow Y$ is additive.

Proof. Assume that $f: X \rightarrow Y$ satisfies (3.1).
Letting $x=y=0$ in (3.1), we get $f(0)=0$.
Letting $y=0$ in (3.1), we get $\left\|2 f\left(\frac{x}{2}\right)-f(x)\right\| \leq 0$ and so

$$
\begin{equation*}
2 f\left(\frac{x}{2}\right)=f(x) \tag{3.2}
\end{equation*}
$$

for all $x \in X$.
It follows from (3.1) and (3.2) that

$$
\begin{aligned}
f(x+y)+f(x-y)-2 f(x) & =2 f\left(\frac{x+y}{2}\right)+f(x-y)-2 f(x) \\
& =\rho(f(x+y)+f(x-y)-2 f(x))
\end{aligned}
$$

and so $f(x+y)+f(x-y)=2 f(x)$ for all $x, y \in X$. It is easy to show that f is additive.

We prove the Hyers-Ulam stability of the additive ρ-functional equation (3.1) in β-homogeneous (complex) F-spaces.

Theorem 3.2. Let $r>\frac{\beta_{2}}{\beta_{1}}$ and θ be nonnegative real numbers and let $f: X \rightarrow Y$ be a mapping satisfying $f(0)=0$ and

$$
\begin{align*}
& \left\|2 f\left(\frac{x+y}{2}\right)+f(x-y)-2 f(x)-\rho(f(x+y)+f(x-y)-2 f(x))\right\| \\
& \leq \theta\left(\|x\|^{r}+\|y\|^{r}\right) \tag{3.3}
\end{align*}
$$

for all $x, y \in X$. Then there exists a unique additive mapping $A: X \rightarrow Y$ such that

$$
\begin{equation*}
\|f(x)-A(x)\| \leq \frac{2^{\beta_{1} r} \theta}{2^{\beta_{1} r}-2^{\beta_{2}}}\|x\|^{r} \tag{3.4}
\end{equation*}
$$

for all $x \in X$.
Proof. Letting $y=0$ in (3.3), we get

$$
\begin{equation*}
\left\|f(x)-2 f\left(\frac{x}{2}\right)\right\|=\left\|2 f\left(\frac{x}{2}\right)-f(x)\right\| \leq \theta\|x\|^{r} \tag{3.5}
\end{equation*}
$$

for all $x \in X$. So

$$
\begin{align*}
\left\|2^{l} f\left(\frac{x}{2^{l}}\right)-2^{m} f\left(\frac{x}{2^{m}}\right)\right\| & \leq \sum_{j=l}^{m-1}\left\|2^{j} f\left(\frac{x}{2^{j}}\right)-2^{j+1} f\left(\frac{x}{2^{j+1}}\right)\right\| \\
& \leq \sum_{j=l}^{m-1} \frac{2^{\beta_{2} j}}{2^{\beta_{1} r j}} \theta\|x\|^{r} \tag{3.6}
\end{align*}
$$

for all nonnegative integers m and l with $m>l$ and all $x \in X$. It follows from (3.6) that the sequence $\left\{2^{k} f\left(\frac{x}{2^{k}}\right)\right\}$ is Cauchy for all $x \in X$. Since Y is complete, the sequence $\left\{2^{k} f\left(\frac{x}{2^{k}}\right)\right\}$ converges. So one can define the mapping $A: X \rightarrow Y$ by

$$
A(x):=\lim _{k \rightarrow \infty} 2^{k} f\left(\frac{x}{2^{k}}\right)
$$

for all $x \in X$. Moreover, letting $l=0$ and passing the limit $m \rightarrow \infty$ in (3.6), we get (3.4).

The rest of the proof is similar to the proof of Theorem 2.2.
Theorem 3.3. Let $r<\frac{\beta_{2}}{\beta_{1}}$ and θ be nonnegative real numbers and let $f: X \rightarrow Y$ be an odd mapping satisfying (3.3). Then there exists a unique additive mapping $A: X \rightarrow Y$ such that

$$
\begin{equation*}
\|f(x)-A(x)\| \leq \frac{2^{\beta_{1} r} \theta}{2^{\beta_{2}}-2^{\beta_{1} r}}\|x\|^{r} \tag{3.7}
\end{equation*}
$$

for all $x \in X$.
Proof. It follows from (3.5) that

$$
\left\|f(x)-\frac{1}{2} f(2 x)\right\| \leq \frac{2^{\beta_{1} r}}{2^{\beta_{2}}} \theta\|x\|^{r}
$$

for all $x \in X$. Hence

$$
\begin{align*}
\left\|\frac{1}{2^{l}} f\left(2^{l} x\right)-\frac{1}{2^{m}} f\left(2^{m} x\right)\right\| & \leq \sum_{j=l}^{m-1}\left\|\frac{1}{2^{j}} f\left(2^{j} x\right)-\frac{1}{2^{j+1}} f\left(2^{j+1} x\right)\right\| \\
& \leq \sum_{j=l+1}^{m} \frac{2^{\beta_{1} r j}}{2^{\beta_{2} j}} \theta\|x\|^{r} \tag{3.8}
\end{align*}
$$

for all nonnegative integers m and l with $m>l$ and all $x \in X$. It follows from (3.8) that the sequence $\left\{\frac{1}{2^{n}} f\left(2^{n} x\right)\right\}$ is a Cauchy sequence for all $x \in X$. Since Y is complete, the sequence $\left\{\frac{1}{2^{n}} f\left(2^{n} x\right)\right\}$ converges. So one can define the mapping $A: X \rightarrow Y$ by

$$
A(x):=\lim _{n \rightarrow \infty} \frac{1}{2^{n}} f\left(2^{n} x\right)
$$

for all $x \in X$. Moreover, letting $l=0$ and passing the limit $m \rightarrow \infty$ in (3.8), we get (3.7).

The rest of the proof is similar to the proof of Theorem 2.2.

References

1. M. Adam: On the stability of some quadratic functional equation. J. Nonlinear Sci. Appl. 4 (2011), 50-59.
2. T. Aoki: On the stability of the linear transformation in Banach spaces. J. Math. Soc. Japan 2 (1950), 64-66.
3. L. Cădariu, L. Găvruta \& P. Găvruta: On the stability of an affine functional equation. J. Nonlinear Sci. Appl. 6 (2013), 60-67.
4. A. Chahbi \& N. Bounader: On the generalized stability of d'Alembert functional equation. J. Nonlinear Sci. Appl. 6 (2013), 198-204.
5. P.W. Cholewa: Remarks on the stability of functional equations. Aequationes Math. 27 (1984), 76-86.
6. G.Z. Eskandani \& P. Gǎvruta: Hyers-Ulam-Rassias stability of pexiderized Cauchy functional equation in 2-Banach spaces. J. Nonlinear Sci. Appl. 5 (2012), 459-465.
7. P. Gǎvruta: A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings. J. Math. Anal. Appl. 184 (1994), 431-436.
8. D.H. Hyers: On the stability of the linear functional equation. Proc. Natl. Acad. Sci. U.S.A. 27 (1941), 222-224.
9. C. Park: Orthogonal stability of a cubic-quartic functional equation. J. Nonlinear Sci. Appl. 5 (2012), 28-36.
10. C. Park: Additive ρ-functional inequalities and equations. J. Math. Inequal. 9 (2015), 17-26.
11. C. Park: Additive ρ-functional inequalities in non-Archimedean normed spaces. J. Math. Inequal. 9 (2015), 397-407.
12. C. Park, K. Ghasemi, S.G. Ghaleh \& S. Jang: Approximate n-Jordan *homomorphisms in C^{*}-algebras. J. Comput. Anal. Appl. 15 (2013), 365-368.
13. C. Park, A. Najati \& S. Jang: Fixed points and fuzzy stability of an additive-quadratic functional equation. J. Comput. Anal. Appl. 15 (2013), 452-462.
14. Th.M. Rassias: On the stability of the linear mapping in Banach spaces. Proc. Amer. Math. Soc. 72 (1978), 297-300.
15. K. Ravi, E. Thandapani \& B.V. Senthil Kumar: Solution and stability of a reciprocal type functional equation in several variables. J. Nonlinear Sci. Appl. 7 (2014), 18-27.
16. S. Rolewicz: Metric Linear Spaces. PWN-Polish Scientific Publishers, Warsaw, 1972.
17. S. Schin, D. Ki, J. Chang \& M. Kim: Random stability of quadratic functional equations: a fixed point approach. J. Nonlinear Sci. Appl. 4 (2011), 37-49.
18. S. Shagholi, M. Bavand Savadkouhi \& M. Eshaghi Gordji: Nearly ternary cubic homomorphism in ternary Fréchet algebras. J. Comput. Anal. Appl. 13 (2011), 1106-1114.
19. S. Shagholi, M. Eshaghi Gordji \& M. Bavand Savadkouhi: Stability of ternary quadratic derivation on ternary Banach algebras. J. Comput. Anal. Appl. 13 (2011), 1097-1105.
20. D. Shin, C. Park \& Sh. Farhadabadi: On the superstability of ternary Jordan C^{*} homomorphisms. J. Comput. Anal. Appl. 16 (2014), 964-973.
21. D. Shin, C. Park \& Sh. Farhadabadi: Stability and superstability of J^{*}-homomorphisms and J^{*}-derivations for a generalized Cauchy-Jensen equation. J. Comput. Anal. Appl. 17 (2014), 125-134.
22. F. Skof: Propriet locali e approssimazione di operatori. Rend. Sem. Mat. Fis. Milano 53 (1983), 113-129.
23. S.M. Ulam: A Collection of the Mathematical Problems. Interscience Publ. New York, 1960.
24. C. Zaharia: On the probabilistic stability of the monomial functional equation. J. Nonlinear Sci. Appl. 6 (2013), 51-59.
25. S. Zolfaghari: Approximation of mixed type functional equations in p-Banach spaces. J. Nonlinear Sci. Appl. 3 (2010), 110-122.

Department of Mathematics, Hanyang University, Seoul 04763, Republic of Korea
Email address: stareun01@nate.com

[^0]: Received by the editors November 07, 2017. Accepted November 20, 2017.
 2010 Mathematics Subject Classification. Primary 39B62, 39B72, 39B52, 39B82.
 Key words and phrases. Hyers-Ulam stability, β-homogeneous F-space, additive ρ-functional equation.

