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HOMOGENEOUS FUNCTION AND ITS
APPLICATION IN A FINSLER SPACE

ByunG-Doo KiM* AND EUN-SEO CHOI

ABSTRACT. We deal with a differential equation which is constructed
from homogeneous function, and its geometrical meaning in a Finsler
space. Moreover, we prove that a locally Minkowski space satisfying
a differential equation Fggg = 0 is flat-parallel.

1. Introduction

Homogeneity of a function on a Finsler geometry plays an important
role. In fact, a Finsler metric L(z,y) is called an (a, 8)-metric if L is
a positive homogeneous function of degree 1 in a and 3, where o? =
a;j(z)y'y’ is a Riemannian metric and B = b;(z)y’ is a 1-form. The
(a, B)-metric has been sometimes treated in theoretical physics ([1],[2]),
and studied by some authors ([3],[4],[5])-

The purpose of the present paper is to give an (a,3)-metric in a
Finsler space satisfying a differential equation, and show its geometrical
meaning.

2. Homogeneous function

In order to prove the theorems of this section, we shall show two
lemmas as follows. First, from the Euler’s Theorem we get

LEMMA 2.1. If the function H(a) is positively homogeneous of degree
n in a, then we have

H(a) = ca™, ¢ = constant.
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Next we consider the function F(e, 3) of two variables, and denote
by the subscripts o, 8 of F' the partial derivatives of F with respect to
a, 3 respectively, that is,

OF OF O2F
Ba 8= 33’ Fap = 908

LEMMA 2.2. Let the function F(a, ) be a positively homogeneous
of degree n in a and (3. If Fgy 5 =0, then we have
——~

F,= , etc.

n+1l
F(a,8) =) cra™ g,
k=0

where cg,c1,... are constants.

PROOF. Let us find the solution of Fjs5.. 5 = 0. Integrating this in 3
——

n+1l
repeatedly and paying attention to the homogeneity of F', from Lemma

2.1 we get
Fﬂﬂ---ﬁ = bo, Fﬂ,@...g = boB + b1,
N~ ——

n n—1
—2
Fag. 5= bo 8% + b8 + b0 B + bya®,
N~
n—3
F =cpa™ + clan_lﬂ_}. e Cnﬂk — chan—kﬁk,
k=0
where b’s and ¢’s are constants. This completes the proof. 0

Let the function F(a, 3) be a positively homogeneous of degree 2 in
a, and B. From the homogeneity of F', we obtain

Fooa0 + FaapB =0, Fopaa+ FopgB =0, Fgaa+ Fggpf = 0.
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If Fgpg = 0, from the above we have Fgy = Foga = Faaa = 0.
Next, we consider a positively homogeneous function F(¢, 3) of degree
3 in a and . Then we have

Fooca + Faaaﬁﬂ =0, Faaﬁaa + Faaﬂﬁﬁ =0,

Foppa + FapppB =0, Fppac + Fapppf = 0.
In this case, if Fgﬁgﬁ = 0, we easily get Fﬁﬁga = FopBa = Faaﬁa =
Faoae = 0. Next, for a positively homogeneous function F(a, 3) of de-
gree 4 in a and B, if Fggggs = 0, then we have Fggga = Fopgpa =

Foopsa = Facapa = Facaaa = 0. In the similar way, paying attention
to the homogeneity of F, consequently we have

THEOREM 2.1. Let F(a, 3) be a positively homogeneous function of
degree n in a and 3. Then the condition Fs5. 5 =0 is equivalent to
N’

n+1
(2-1) F‘iliz...’in+1 = 0) i17i2’ te ’in'f'l € {a’ ’B}'
REMARK. This theorem means that a general solution of the differ-
ential equation F,;, i,., =0, i1,%2,...,%n41 € {@, B}, does not depend

on the choice of the subscript variables a and .

Since an (a, )-metric L(e, 8) in a Finsler space is a positively homo-
geneous of degree 1 in a and g, it is possible to give an (a, 3)-metric by
putting F' = L™. From Lemma 2.2 and Theorem 2.1 we have

THEOREM 2.2. Let F(a, ) be a positively homogeneous function of
degree n in o and B. Then the solution of the differential equation

Fiig.iinsr = 0, 81,82, .+ ,iny1 € {a, B}, is an (a, B)-metric as follows:
n 1/n
(2.2) (o, f) = (Z cka"-’“ﬂ'“) , F=1L"
k=0

REMARK. The metric (2.2) is exactly regarded as a generalization
of the Randers metric. In 1984 Shibata ([7]) dealt with an interesting
(a, B)-metric

L(a, IB) = (as R cka‘gakﬁk + .-+ ﬂs)r,

where rs = 1 and c’s are constants. This metric is only a special case of
the equation (2.2) if ¢ = ¢, = 1.
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3. A Finsler space satisfying Fggg = 0

We consider a Finsler space F™* = (M™,L(a,B)) with an (o, f)-
metric, where M™ is an n-dimensional differential manifold equipped
with a fundamental function L. The function L(a, ) is a positively
homogeneous of degree 1 in a and 3, where a = (a;;(z)y*y’)!/? is a Rie-
mannian metric and 3 = b;(z)y’ is a differential 1-form. If we put F =
L?/2 and §; = 8/8y’, then the fundamental tensor 9ij(z,y) = 0,0;F
and the Cartan’s C-tensor C;j;, are given by ([1])

9ij = (Fa/Q)kij + (Faa/®)yiy; + (Fap/a)(yib; + y;jbi) + Faabib;,
(3.1) 2Csjk = (Fap/)(Kijpr + Kjkpi + Kiipj) + Fapp pip;Dk-

where we put K;; = a;; — Yi¥Y5, ¥i = aijyj, and p; = b; — (,3/02)%-

It is well known that any 2-dimensional Finsler space is strongly
non-Riemannian and has the Berwald frame ([1]). But a 3-dimensional
Finsler space is strongly non-Riemannian, if and only if vector C; = C;",
does not vanish. Any Finsler space of dimension n > 3 with («, 3)-metric
is not strongly non-Riemannian. Since the set of Riemannian space is
characterized by the equation C;;; = 0, it is proper that we should pay
attention to the behaviour of this tensor C;jx in a Finsler space with
(e, B)-metric. Then, what is a suitable and simple form of Cijr?

Matsumoto early dealt with a C-reducible ([1], [5]), that is,

Cijk = h,;jAk + hjkAi + hkiAj,

where h;; = gi; — l;l;, I; = &-L and A; is some vector. It is well known
that a C-reducible Finsler space is induced to a Randers space and a
Kropina space.

On the other hand, we can consider another simple form of Cijk. If
Fpspp = 0, from (3.1) we obtain

Cijk = KijBr + K1 B; + Ky Bj,
for some vector B;. Putting F = L?/2, and using Lemma 1.2, the

solution of the differential equation Fggg = 0is L? = ¢;a%+2cpa8+c3/32,
where c’s are constants. Therefore we have
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LEMMA 3.1. In the Finsler space F™ = (M™, L(c, §)) the followings
are equivalent to each other:
a) Cijr = KijBk + Kk B; + Ky Bj,
(3.2) b) Fppp =0,
c) I?= c1a2 + 2co08 + 03,32, c1,c2,c3 #0,1.
Let v;%k(z) be Christoffel symbols of the Riemannian metric o and
G;'x(z,y) be connection coefficients of the Berwald connection BI' of

an (o, 8)-metric L(a, ). Then the previous paper ({1],[3]) gives the
equation to find the difference B;’x = G;*x — v, k:

(3.3) LaBj* i/ yr = aLp(bjs — Bi*ibk)y’,

where L, = 8L/8a, Lg = OL/0B and (;) denotes the covariant differ-
entiation with respect to the Riemannian connection 7;*x(z).

We consider a locally Minkowski space F™ = (M™, L), that is, M™
admits a covering by coordinate neighborhoods in each of which the

. T
fundamental function L is a function of y* alone. We denote by Rnijk a
Riemannian curvature tensor with respect to the ;.

DEFINITION 3.1 ([5]). A locally Minkowski space with (a, 3)-metric
is called flat-parallel, if o is locally flat(Rpijx = 0) and b; is parallel
with respect to a(b;;; = 0).

THEOREM A ([3]). A F* = (M",(a,0)) is a locally Minkowski if

and only if B;*; are functions of z alone and Ry’ ji of the Riemannian
« is written as:

(3.4) Rhijk = -‘U(jk){Bhij;k + Bher'rik}’
where U(jk) denotes the terms obtained from the preceding terms by
interchanging indices j and k.

On the other hand, we shall find some (o, 3)-metrics which define
flat-parallel Minkowski spaces. Putting Pigo = B;*iy7yx and Qi =
(bj;i — B;*ibk)y?, the equation (3.3) is written as

(3.5) Lo Pigo = aLpQio,
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where the index 0 denotes as usual the transvection by y*. It is remarked

that for a locally Minkowski space these P,go and Q;o are polynomials

in 4 of degree 2 and 1 respectively. If (3.5) gives Piggp = Qip = 0

necessarily, then we have Bjk,- =0 and b;;; = 0, and (3.4) shows .ﬁhijk =

0. Consequently this L(a, §) defines a flat-parallel Minkowski space.
We shall apply this procedure to the metric (3.2) ¢).

THEOREM 3.1. A locally Minkowski space with the metric (3.2) ¢) is
flat-parallel.

PROOF. From (3.2)c), we have L, = (cia + ¢208)/L, Lg = (coa +
c3f)/L. Substituting this into (3.5), we get

(3.6) (c1Pino — €3BQi0)ex + (c2BPino — c20?Qip) = 0.
Since « is irrational in y*, (3.6) leads us to

{ c1P00 — c38Qi0 = 0,

c2BPi00 — c20*Qi0 = 0.

g —c3f . A .
From det < caB —cza2) # 0, it follows that Pygp = Qi0 = 0. This

completes the proof. a

For arc-length s, a geodesic in F™ is given by the differential equations
d®z/ds® + 2G'(z,dz/ds) = 0,

where 2G* = ¢*"(y70,0,F — 8,F), 8; = 8/8z7 and F = L?/2.

Let F* = (M™,L) and F™ = (M", L) be two Finsler spaces on the
same underlying manifold M™. If any geodesic of F™ is a geodesic of F™
and vice versa, then F" is called projective to F™ and change o : L — L
of metric is called projective. It is well-known that o is projective if and
only if there exists a positively homogeneous function P(z, y) of degree 1
in 4 satisfying G* = G* + Py*. Throughout the following we indicate by
putting bar the corresponding quantities of 7. Assume that a change
o:F"=(M" L(a,fB)) = F" = (M", L(a, B)) of (o, B)-metric.

On the other hand, we shall introduce a 3-change ([5]) as follows:
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DEFINITION 3.2. Let L(a,3) be an (a,8)-metric. The change ¢ :
a — L{a, B) of metric is called a G-change.

If we denote by R™ the associated Riemannian space with a Finsler
space F™ with (o, §)-metric, then the §-change is the change from R™
to F™. There is a theorem between projective change and (-change as
follows:

THEOREM B ([5]). A B-change is projective, if and only if we have
(3.7) Lg¥;; + Lggf2i; = 0,

where ;; = (bi; — bj;i) /2 , ;5 = (piB; — p;Bis)/2 and B; = bz

Now we consider a change 7 : @« — L = y/c1a? + 2coa3 + c3(2.
Then, from Theorem B we can obtain the condition for a change 7 to
be projective.

THEOREM 3.2. A changew : o — L = \/Zlaz + 2coaf + c302 is
projective if and only if we have b;,; = 0.

PROOF. From (3,2)c), we have Lg = (coa+c3B)/L, Lgg = A1a?/L3,
where A; = cyc3 — ¢ # 0 is supposed because (3.2) ¢) is not a Randers
metric. Substituting this into (3.7), we get

(3.8) cza(c1a2 + 3C3,32)!pij + (Aga2,3 + c§ﬂ3)%-j + Alaz.Qij = (,

where Ay = c;c3 + 2¢3. Since o is an irrational polynomial of y¢, (3.8)
leads us to (c;0? + 3c3fB?)¥;; = 0. From cia? + 3c3f? # 0, we have
¥;; = 0. Substituting this into (3.8), by virtue of A; # 0 we have §2;; =
0. Further, transvecting this by 3* and using p;y* = 0 and ¥;; = 0, we
obtain b;;; = 0. Conversely, if b;;; = 0, it satisfies (3.8). This completes
the proof. 0

On the other hand, Park and Choi (cf. 6], Theorem 3.2) dealt with
the condition that a Finsler space with a metric (3.2) c) to be a projec-
tively flat. Combining this Theorem and Theorem 3.2, we can give more
geometrical meaning like a Matsumoto’s Theorem (cf. [4], Theorem 2).
Thus we have
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COROLLARY 3.1. A Finsler space with an (¢, §)-metric (3.2) c) is pro-

jectively flat if and only if a change 7 : @ — L = \/c10? + 2cpa8 + ¢332
is projective and the associated Riemannian space with the metric o is
projectively flat.

(1]

2
3}
4]
(5]
(6]
7]
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