• Title/Summary/Keyword: -energy-dispersive x-ray-

Search Result 1,064, Processing Time 0.022 seconds

Synthesis and characterization of silicon ion substituted biphasic calcium phosphate (실리콘 이온이 첨가된 biphasic calcium phosphate의 합성 및 특성평가)

  • Song, Chang-Weon;Kim, Tae-Wan;Kim, Dong-Hyun;Park, Hong-Chae;Yoon, Seog-Young
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.20 no.5
    • /
    • pp.243-248
    • /
    • 2010
  • Si-substituted biphasic calcium phosphates (Si-BCP) were prepared by co-precipitation method. X-ray diffraction and fourier transform infrared spectroscopy were used to characterize the structure of Si-BCP powders. The Si-BCP powders with various Ca/(P+Si) molar ratio were carried out on structural change of hydroxyapatite (HAp) and ${\beta}$-tricalcium phosphate ($\ss$-TCP). The in-vitro bioactivity of the Si-BCP powders was determined by immersing the powders in SBF solution, after that observing the chemical composition and morphology change by X-ray diffraction, scanning electron microscope and energy dispersive spectroscopy.

Effect of Nitrogen Precursors in Non-precious Metal Catalysts on Activity for the Oxygen Reduction Reaction (비귀금속 촉매에서 사용되는 질소 전구체가 산소 환원 반응의 활성에 미치는 영향)

  • Yoon, Ho Seok;Jung, Won Suk
    • Korean Chemical Engineering Research
    • /
    • v.60 no.1
    • /
    • pp.151-158
    • /
    • 2022
  • Iron and nitrogen coordinated carbon catalyst (Fe-N-C) is the most promising non-precious metal catalyst (NPMC) studied to alternate the Pt-group oxygen reduction reaction (ORR) catalyst. In this work, Fe/N/C type catalysts are prepared by four different nitrogen precursors; N, N, N', N'-tetramethylethylenediamine (TMEDA), 1,2-ethylenediamine (EDA), m-dicyanobenzene (DCB), dicyandiamide (DCDA) which can chelate a transition metal; In addition, the catalysts conducted the pyrolysis process at four different temperatures of 700, 800, 900, 1000 ℃ to investigate the ORR activities depend on pyrolysis temperature and to find an appropriate temperature. The characterizations of catalysts were investigated by scanning electron microscope-energy dispersive X-ray spectrometer (SEM-EDS), X-ray diffraction (XRD), and element analysis (EA). The electrocatalytic activity was measured by ORR polarization, also the electron transfer number was calculated from the slope of the K-L plot. The FeNC-EDA-800 which were prepared at pyrolysis temperature of 800 ℃ with EDA showed better ORR activity than the other catalysts.

Effects of Wet Chemical Treatment and Thermal Cycle Conditions on the Interfacial Adhesion Energy of Cu/SiNx thin Film Interfaces (습식표면처리 및 열 사이클에 따른 Cu/SiNx 계면접착에너지 평가 및 분석)

  • Jeong, Minsu;Kim, Jeong-Kyu;Kang, Hee-Oh;Hwang, Wook-Jung;Park, Young-Bae
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.21 no.1
    • /
    • pp.45-50
    • /
    • 2014
  • Effects of wet chemical treatment and thermal cycle conditions on the quantitative interfacial adhesion energy of $Cu/SiN_x$ thin film interfaces were evaluated by 4-point bending test method. The test samples were cleaned by chemical treatment after Cu chemical-mechanical polishing (CMP). The thermal cycle test between Cu and $SiN_x$ capping layer was experimented at the temperature, -45 to $175^{\circ}C$ for 250 cycles. The measured interfacial adhesion energy increased from 10.57 to $14.87J/m^2$ after surface chemical treatment. After 250 thermal cycles, the interfacial adhesion energy decreased to $5.64J/m^2$ and $7.34J/m^2$ for without chemical treatment and with chemical treatment, respectively. The delaminated interfaces were confirmed as $Cu/SiN_x$ interface by using the scanning electron microscope and energy dispersive spectroscopy. From X-ray photoelectron spectroscopy analysis results, the relative Cu oxide amounts between $SiN_x$ and Cu decreased by chemical treatment and increased after thermal cycle. The thermal stress due to the mismatch of thermal expansion coefficient during thermal cycle seemed to weaken the $Cu/SiN_x$ interface adhesion, which led to increased CuO amounts at Cu film surface.

Influences of the Irradiation of Intense Pulsed ion Beam (IPIB) on the Surface of Ni$_3$Al Base Alloy IC6

  • Le, X.Y.;Yan, S.;Zhao, W.J.;Han, B.H.;Wang, Y.G.;Xue, J.M.;Zhang, H.T.
    • Journal of Korean Vacuum Science & Technology
    • /
    • v.6 no.2
    • /
    • pp.92-96
    • /
    • 2002
  • In this paper, we treated the Ni$_3$Al based alloy samples with intense pulsed ion beams (IPIB) at the beam parameters of 250KV acceleration voltage, 100 - 200 A/cm$^2$ current density and 60 u pulse duration. We simulated the thermal-mechanical process near the surface of Ni$_3$Al based alloy with our STEIPIB codes. The surface morphology and the cross-section microstructures of samples were observed with SEM, the composition of the sample surface layer was determined by X-ray Energy Dispersive Spectrometry (XEDS) and the microstructure on the surface was observed by Transmission Electron Microscope (TEM). The results show that heating rate increases with the current density of IPIB and cooling rate reached highest value less than 150 A/cm$^2$. The irradiation of IPIB induced the segregation of Mo and adequate beam parameter can improve anti-oxidation properly of IC6 alloy. Some craters come from extraneous debris and liquid droplets, and some maybe due to the melting of the intersection region of interphase. Increasing the pulse number enlarges average size of craters and decreases number density of craters.

  • PDF

Electrochemical Characteristics of Polyoxometalate/Polypyrrole/Carbon Cloth Electrode Synthesized by Electrochemical Deposition Method (전기화학 증착법에 의해 합성된 폴리옥소메탈레이트/폴리피롤/탄소천 전극의 전기화학적 특성)

  • Yoon, Jo Hee;Choi, Bong Gill
    • Applied Chemistry for Engineering
    • /
    • v.27 no.4
    • /
    • pp.421-426
    • /
    • 2016
  • In this report, polyoxometalte (POM)-doped polypyrrole (Ppy) was deposited on surface of three-dimensional carbon cloth (CC) using an electrodeposition method and its pseudocapacitive behavior was investigated using cyclic voltammetry and galvanostatic charge-discharge. The POM-Ppy coating was thin and conformal which can be controlled by electrodeposition time. As-prepared POM-Ppy/CC was characterized using scanning electron microscope and energy-dispersive X-ray spectroscopy. The unique 3D nanocomposite structure of POM-Ppy/CC was capable of delivering excellent charge storage performances: a high areal capacitance ($561mF/cm^2$), a high rate capability (85%), and a good cycling performance (97% retention).

A QUANTITATIVE ANALYSIS OF THE IN VIVO AMALGAM CORROSION PRODUCTS (Amalgam 부식산물의 정성분석에 관한 연구)

  • Lim, Byong-Mok;Um, Chung-Moon
    • Restorative Dentistry and Endodontics
    • /
    • v.16 no.2
    • /
    • pp.1-17
    • /
    • 1991
  • The purpose of this study was to analyze the in vivo amalgam corrosion products qualitatively. 30 molars with large, intact amalgam restorations were selected. All the restorations were more than 5 years old. Twenty of the removed amalgams were embedded in acrylic resin block. The exposed surfaces of fifteen embedded amalgams were polished by amalgam polishing kit, and the rest were observed without polishing. The remaining 10 amalgams were fractured centrally and perpendiculary to the occlusal surface with a wire-cutter. After all specimens were cleaned ultrasonically in distilled water, each surface was examined under S.E.M. and E.D.A.X. (Energy Dispersive Micro X-ray Analyzer) to determine the morphology and chemical nature of the corrosion products. The following results were obtained: 1. The surfaces of the unpolished amalgam restorations were covered with thin amorphous layer of Sn-Ca-P-S complex with numerous cracks. 2. In the conventional amalgams, the major corrosion products were Sn-Cl phases however, tin oxide phases were also observed. 3. Only tin oxide phase was identified in the high copper amalgam, but it was less frequently observed than in the conventional amalgam. 4. It was easier to observe the corrosion product morphology in the fractured surfaces than in the polished ones. The morphologies of the corrosion product crystals looked like a stack of slightly bended plates in the Sn-Cl phases and polyhedra or polygonal prisms in the tin oxide phases.

  • PDF

Microscopic Analysis of Prefinitely Strained Cement Paste

  • Song, Ha-Won;Kim, Jang-Ho;Choi, Jae-Hyeok;Byun, Keun-Joo
    • KCI Concrete Journal
    • /
    • v.11 no.3
    • /
    • pp.127-140
    • /
    • 1999
  • In this paper, a microscopic analysis of prefinitelv strained cement paste specimen was carried out. The microscopic behavior of concrete under triaxial stress must be fully understood in order to explain the additional ductilitv that comes from lateral confinement and to get microstructural information in large deformed and large strained concrete. The so-called "tube-squash" test was applied to achieve enormously high shear and deviatoric strain of concrete under extremly high pressure without fracture. Then, microscopic analyses by focusing on hydration and microstructure of Prefinitely strained cement paste were carried out on cored-out deformed and virgin (undeformed) cement paste specimens : the first specimen being 40 days old, the second one being one year old. The microscopic analysis bv Field Emission Scanning Electronic Microscope (FESEM) was carried out for comparison between the specimens after 40 days and those arter one year. For one year old specimens, X-Ray Diffractometer (XRD) analysis, Energy Dispersive x-rav Spectrometer (EDS) analysis, and Differential Thermal Analysis/Thermo-Gravitv (DTA/TG) analysis were also carried out to study the hydration and the microstructures of prefinitely strained cement paste specimen by focusing on the methodologies of their microscopic analyses. analyses.

  • PDF

Characterization of Unburned Carbon Particles from Fly Ash Using SEM (비산회로부터 회수한 미연탄소분의 전자현미경을 이용한 특성분석)

  • Ahn, Yang-Kyu;Kil, Dae-Sup
    • Analytical Science and Technology
    • /
    • v.15 no.6
    • /
    • pp.567-573
    • /
    • 2002
  • The most important and largest commercial outlet of fly ash in Korea is a replacement material of Portland cement in concrete industry. The high level of unburned carbon in ash brings about some malfunctions in concrete. Therefore, fly ash is refined to improve the quality as a concrete additive. In this process, a lot of the residual carbon is produced, and discarded now. In the present study, to find out a valuable outlet of the enriched carbon samples, the basic morphology of residual carbon in fly ash from Boryung power plant was investigated. The unburned carbon characterization included shape, size measurement, and chemical analysis was examined using scanning electron microscope (SEM) and energy dispersive X-ray spectrometer (EDX).

Compression Study of Goethite at Room Temperature (상온에서 괴타이트에 대한 압축 연구)

  • Kim, Y.H.;Hwang, G.C.;Do, J.K.
    • Journal of the Mineralogical Society of Korea
    • /
    • v.20 no.4
    • /
    • pp.261-266
    • /
    • 2007
  • A natural FeOOH-goethite was compressed up to 9.5 GPa at room temperature using a DIA-type large volume apparatus with synchrotron radiation. Energy dispersive x-ray diffraction method was employed to measure its compressibility and NaCl was used for high pressure determinations. Bulk modulus was determined to be 131.1 (${\pm}5.8$) GPa by the Birch-Murnaghan equation of state with $K_0'$ fixed to 4. The present result is not in accord with the previous measurements, which vary from 111 to 147.9 GPa.

The Effects of TiC Content on Microstructure of Modified A6013-3wt.%Si Alloy Powder Compact (TiC 첨가량에 따른 개량된 A6013-3wt.%Si 합금 분말성형체의 미세조직 변화)

  • Yoo, Hyo-Sang;Kim, Yong-Ho;Son, Hyeon-Taek
    • Journal of Powder Materials
    • /
    • v.29 no.1
    • /
    • pp.28-33
    • /
    • 2022
  • Aluminum-based powders have attracted attention as key materials for 3D printing owing to their low density, high specific strength, high corrosion resistance, and formability. This study describes the effects of TiC addition on the microstructure of the A6013 alloy. The alloy powder was successfully prepared by gas atomization and further densified using an extrusion process. We have carried out energy dispersive X-ray spectrometry (EDS) and electron backscatter diffraction (EBSD) using scanning electron microscopy (SEM) in order to investigate the effect of TiC addition on the microstructure and texture evolution of the A6013 alloy. The atomized A6013-xTiC alloy powder is fine and spherical, with an initial powder size distribution of approximately 73 ㎛ which decreases to 12.5, 13.9, 10.8, and 10.0 ㎛ with increments in the amount of TiC.