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초    록

본 연구에서는 폴리옥소메탈레이트(polyoxometalate, POM)가 도핑된 폴리피롤(polypyrrole, Ppy)을 3차원 구조의 탄소
천(carbon cloth, CC) 표면 위에 전기화학적 증착법을 이용하여 합성하고 이의 의사커패시터 특성을 순환전압전류법과 
정전류 충전-방전법을 사용하여 분석하였다. POM-Ppy의 코팅은 전기화학적 증착 시간에 따라서 얇은 conformal형태
의 코팅으로 조절되었다. 제조된 POM-Ppy/CC의 재료 특성은 전자주사현미경과 X-선 분광분석을 사용하여 분석하였
다. POM-Ppy/CC의 3차원 나노복합체 구조는 높은 비정전용량(561 mF/cm2), 고속 충방전(85% 용량 유지율) 및 장수명 
특성(97% 용량 유지율)을 나타내었다.

Abstract
In this report, polyoxometalte (POM)-doped polypyrrole (Ppy) was deposited on surface of three-dimensional carbon cloth 
(CC) using an electrodeposition method and its pseudocapacitive behavior was investigated using cyclic voltammetry and gal-
vanostatic charge-discharge. The POM-Ppy coating was thin and conformal which can be controlled by electrodeposition time. 
As-prepared POM-Ppy/CC was characterized using scanning electron microscope and energy-dispersive X-ray spectroscopy. 
The unique 3D nanocomposite structure of POM-Ppy/CC was capable of delivering excellent charge storage performances: 
a high areal capacitance (561 mF/cm2), a high rate capability (85%), and a good cycling performance (97% retention).
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1. Introduction
1)

Pseudocapacitors accumulate electrical charges using fast and rever-

sible faradic redox reactions of conducting polymers and metal oxides 

(or hydroxides) as electrode materials[1-5]. These pseudocapacitive 

materials are capable of delivering higher theoretical capacitance com-

pared to carbon-based electrode materials which are widely used elec-

trical double layer capacitors[6,7]. For instance, hydrous ruthenium ox-

ide-based electrodes were reported to achieve as high as specific ca-

pacitance of 1200 F/g using aqueous electrolytes[8]. Despite this re-

markable performance, the relative high cost of ruthenium for the prep-
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aration of ruthenium-based electrode materials limits their widespread 

applications. In this regard, conducting polymers, such as polyaniline 

and polypyrrole, have attracted great of attention as alternative materi-

als to conventional activated carbons because of their high theoretical 

capacitances, high electrical conductivity, low cost, and environmental 

friendliness[9-12]. Although conducting polymers provide high theoret-

ical capacitance values, conducting polymer-based electrodes suffer 

from poor cyclic stability due to mechanical degradation during the 

doping/dedoping process over long periods of time[9-12]. 

To address this issue, a number of studies have been attempted, includ-

ing well-controlled nanostructures of conducting polymers, hybridization 

with carbon materials, and development of anionic dopants[13-17]. In 

particular, the employment of advanced anionic dopants for polymer-

ization of conducting polymers have influenced electrical conductivity, 

morphology, and redox reaction behavior during electrochemical re-

actions, resulting in enhanced long-term stability. Zhitomirsky et al. syn-

thesized sulfanilic acid azochromotrop-doped polypyrrole electrode mate-
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Figure 1. A chronoamperometic curve for electrochemical deposition 
of POM-Ppy on CC. Inset is scheme of co-electrodepoistion of POM 
and Ppy on carbon fiber.

rials, showing 91.5% capacitance retention after 1000 cycles[18]. Same 

group improved cycle life of pseudocapacitors based on tiron-doped poly-

pyrrole electrodes[19]. However, these acidic dopants are toxic, and thus 

are limited to commercial use in preparation of electrode materials. 

Polyoxometalates (POMs) are anionic metal oxide cluster at nano-

scale and are considered promising candidates for preparing electro-

chemical electrodes in applications of water splitting, sensors, and en-

ergy conversion and storage due to their multiple redox properties, 

thermal stability, and electron/proton transfer (or storage) abil-

ities[20-22]. Compared to other dopants, POMs could accumulate elec-

trical charges through redox reactions, resulting in high theoretical val-

ues for supercapacitor applications. Some of the studies have been at-

tempted to incorporate POMs into conducting polymer matrixes. 

Gómez-Romero et al. described preparation of POM-incorporated con-

ducting polymer nanocomposites based on their strong electrostatic 

interactions. This study showed high specific capacitances of 120 F/g 

for POM-doped polyaniline[23]. Freund et al. reported a higher specif-

ic capacitance (210 F/g) for pseudocapacitors based on porous structure 

of POM-doped polypyrrole electrodes[24]. The porous structure en-

abled efficient and rapid ion transfer, and thus improved electro-

chemical performances. McCormac et al. reported POM-entrapped pol-

ypyrrole through electrochemical deposition of POMs during electro-

polymerization of pyrrole monomers[25]. Although the electrochemical 

method is simple and effective for incorporation of POMs into con-

ducting polymers, no reports have yet described on the development of 

pseudocapacitors using POM-doped conducting polymers deposited on 

porous carbon structures. 

Herein, we report a simple and efficient method for the preparation 

of three-dimensional (3D) POM-doped polypyrrole (Ppy)-deposited on 

carbon cloth (CC) through an electrochemical deposition process. The 

coating of POM-Ppy was optimized by deposition time for 

chronoamperometry. The POM-Ppy continuously coated to the 3D CC 

surface. In this architecture of POM-Ppy/CC, the POM-Ppy produced 

multiple and redox reactions at the surface of 3D CC, while 3D CC 

supported rapid ion and electron transfer. When evaluating electro-

chemical performances, the POM- Ppy/CC exhibited high areal capaci-

tance, high rate capability, and long-term cycling stability. 

2. Experimental 

2.1. Materials

All chemicals were commercially available and used without further 

purification. Phosphomolybdic acid hydrate (H3PMo12O40⋅xH2O, de-

noted POM) and pyrrole (98%) were obtained from Sigma-Aldrich. 

H2SO4 (95%) was purchased from Junsei Chemical Co., Ltd. The de-

ionized (DI) water (18.2 MΩ cm, Millipore Milli Q water system) was 

used in all experiments.

2.2. Preparation of POM-Ppy/CC

The POM-Ppy/CC was prepared by an electrochemical deposition 

method using a chronoamperometric technique by a VersaSTAT 4 

(Princeton Applied Research) potentiostat. A constant potential of 

+0.65 V vs. Ag/AgCl was applied for different deposition times to ob-

tain optimized POM-Ppy/CCs. The electrolyte solution for POM-PPy 

electroplating was prepared by mixing 7 mM of pyrrole monomer and 

5 mM of POM dispersed in DI water. After electrodeposition, the 

POM-Ppy/CCs were washed several times with ethanol and DI water 

and then dried at 60 ℃ under vacuum. 

2.3. Electrochemical measurements

All of electrochemical measurements, including cyclic voltammetry 

(CV) and galvanostatic charge/discharge, were conducted on a 

VersaSTAT 4 (Princeton Applied Research) using a conventional 

three-electrode system. The Pt wire and an Ag/AgCl electrode were 

used as the counter and reference electrode, respectively. The electro-

lyte used is a 1 M H2SO4 aqueous solution. In order to evaluate super-

capacitor performance, CV tests were carried out at various scan rates 

from 10 to 100 mV/s. Galvanostatic charge/discharge measurements 

were made at current densities from 1 to 30 mA/cm-2. Cycle life per-

formance was tested using galvanostatic charge/discharge measure-

ments at a constant current density of 1 mA/cm-2 over 1000 cycles.

3. Result and Discussion

POM-Ppy/CCs were typically fabricated by co-electrochemical depo-

sition of POM and Ppy on carbon fiber surface of CC (Inset of Figure 

1). A chronoamperometric technique allowed to incorporation of POMs 

into Ppy during electrochemical polymerization of pyrrole monomers. 

Figure 1 shows a typical chronoamperometric curve for preparation of 

POM-Ppy/CC samples. The current decays with reaction time, which 

is according to the Cottrell behavior as a result of natural convection 

effects and coupled chemical reactions. After co-electrodeposition of 

POM and Ppy, black color of CC changed to dark green. The 

POM-Ppy/CCs shows the excellent mechanical flexibility, and after 

bending, twisting, or folding they retains their original state without 

any cracks or damage. The coating of POM-Ppy was optimized by 

deposition time for a chronoamperometric process (Figure 1). Scanning 

electron microscope (SEM) images of Figure 2 showed the coating 
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Element C K N K O K P K Mo L

Weight (%) 22.56 6.67 25.76 1.98 43.03

Table 1. Elemental Weight Ratio of POM-Ppy/CC

Figure 4. CV curves of POM-Ppy/CCs obtained from different 
deposition times of 100-1000 s.

Figure 5. Areal capacitance values of POM-Ppy/CCs obtained from 
different deposition times of 100-1000 s.

Figure 2. SEM images of POM-Ppy/CC obtained from different 
deposition times of (a) 0 s, (b) 100 s, (c) 200 s, (d) 500 s, (e) 700 
s, and (f) 1000 s. Inset is SEM image of Ppy/CC.

Figure 3. EDX analysis of POM-Ppy/CC.

morphology of POM-Ppy/CCs with different deposition times ranging 

from 100 to 1000 s. Figure 2a showed bare CC sample composed of 

interconnected 3D carbon fibers. As the coating time increased, 

POM-Ppy gradually deposited and covered the surface of CC. Ppy/CC 

sample without POMs showed similar morphology of POM-Ppy/CC 

(Inset of Figure 1a). Low-cost CC has been extensively used in energy 

storage and conversion applications as electrode substrate (i.e., current 

collectors) to support electrochemical active materials[26,27]. CC pro-

vides 3D large surface area POM-Ppy coating roughed the surface of 

the carbon fibers of CC. The thin and conformal coating of POM-Ppy 

layers was observed. Energy dispersive X-ray spectroscopy (EDX) 

analysis confirmed the presence of Mo, P, and O elements for POMs 

and C and N elements for Ppys (Figure 3). In addition, atomic ratio 

of Mo element was 43.03 wt% in POM-Ppy/CC (Table 1).

In order to optimize deposition time, CV measurement for 

POM-Ppy/CCs was performed under a three-electrode system (Figure 

4). CV is a useful technique for characterizing the electrochemical and 

capacitive behavior; area of current density and shape of CV in anodic 

and cathodic directions. All CV curves showed three-redox peaks in a 

potential range of -0.1 to 0.9 V due to the multiple redox properties 

of POMs. The three reversible redox reactions are according to the fol-

lowing equations[28]:

PMo12O40
3- + 2e- + 2H+ ↔ H2PMo12O40

3- (1)

H2PMo12O40
3- + 2e- + 2H+ ↔ H4PMo12O40

3- (2)

H4PMo12O40
3- + 2e- + 2H+ ↔ H6PMo12O40

3- (3)

The areal capacitance of POM-Ppy/CCs was evaluated from the CV 

curves using the following equation[4]:

C = ∫idV/(2Av∆V) (4)

where i is the current (A), ∫idV is the integration area for the CV 

curves, v is the scan rate (V/s), A is the area (cm2) of electrode, ∆V 

is the potential window (V). When depositing POM and Ppy during 

700 s, we obtained maximum specific capacitance of 486 mF/cm2 for 

POM-Ppy/CC (Figure 5). In this work, we selected deposition time of 

700 s and further characterized the POM-Ppy/CC sample synthesized 

at deposition time of 700 s.

Figure 6a shows the CV curves of a typical POM-Ppy/CC and 
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(a)

(b)

Figure 6. (a) CV curves of Ppy/CC and POM-Ppy/CC measured at 
scan rate of 50 mV/s. (b) CV curves of POM-Ppy/CC measured at 
different scan rates of 10, 25, 50, 75, and 100 mV/s.

(a)

(b)

Figure 7. (a) Galvanostatic charge-discharge curves of POM-Ppy/CC 
measured at different current densities of 1, 2, 5, 7.5, 10, 20, and 30 
mA/cm2. (b) Areal capacitance values of POM-Ppy/CC calculated with 
different current densities of 1-30 mA/cm2.

Ppy/CC electrodes in 1 M Na2SO4 aqueous electrolyte. Compared to 

Ppy/CC, POM-Ppy/CC obviously showed tree characteristic redox 

peaks, which were attributed to the phosphomolybdate anion being pro-

gressively reduced/oxidized. Area of CV curve for POM-Ppy/CC was 

much higher than that of Ppy/CC, indicating higher specific 

capacitance. The CV analysis of POM-Ppy/CC was further charac-

terized at various scan rates of 10-100 mV/s (Figure 6b). As the scan 

rate increased, the POM-Ppy/CC maintained reversible and redox three 

peaks and had increased current densities, indicating potential of high 

rate capability. 

The charge-discharge behavior of POM-Ppy/CC was intensively 

characterized using a galvanostatic charge-discharge measurement. 

Figure 7a showed charge-discharge profiles of POM-Ppy/CC measured 

at different current densities in the range of 1-30 mA/cm2. These 

curves are symmetric, but non-linear due to the redox reactions of 

POMs which are consistent with CV characterization. The areal capaci-

tance (mF/cm2) was calculated from the discharge curves based on the 

following equation[4]:

Carea = I∆t/A∆V (5)

where, I, ∆t, A, and ∆V are the current (A), the discharge time (s), 

the potential window of the discharge (V), and the geometric surface 

area (cm2), respectively. At low current density of 1 mA/cm2, the 

POM-Ppy/CC had a maximum areal capacitance of 561 mF/cm2. This 

result are much better than previously reported values from the 

Ppy-based electrode materials[24]. As the current density was increased 

to 30 mA/cm2, the areal capacitance of the POM-Ppy/CC decreased 

slightly; 561 mF/cm2 (1 mA/cm2), 555 mF/cm2 (2 mA/cm2), 532 

mF/cm2 (5 mA/cm2), 525 mF/cm2 (7 mA/cm2), 506 mF/cm2 (12 

mA/cm2), 488 mF/cm2 (20 mA/cm2), and 476 mF/cm2 (30 mA/cm2), 

respectively. These high areal capacitance values were attributed to the 

combination of pseudocapacitive behavior of POM and Ppy and facili-

tated electron and ion transfer within 3D CC structures. These values 

were plotted in Figure 7b. The POM-Ppy/CC had a high level of 85% 

capacitance retention when increasing current densities from 1 to 30 

mA/cm2, indicating a high rate capability of POM-Ppy/CC. 

In order to evaluate the durability of the POM-Ppy/CC, galvanostatic 

charge-discharge measurement was characterized at an applied constant 

current density of 1 mA/cm2 under a three-electrode system over 1000 

cycles. Figure 8 showed capacitance retention of the POM-Ppy/CC 
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Figure 8. Cycling performance of POM-Ppy/CC measured at an 
applied constant current density of 1 mA/cm2 during 1000 cycles.

during 1000 cycles. After 1000 cycles, capacitance fading was negli-

gible; 97% capacitance retention was observed at the POM-Ppy/CC. 

This result indicated an excellent cycle life of the POM-Ppy/CC. The 

3D CC structures effectively enhanced electron and ion transfer, and 

thus improved redox reactions of POM and Ppy over the long-term 

charge-discharge periods of time. 

4. Conclusion 

We prepared POM-doped Ppy-coated CC through a simple synthetic 

method of co-electrodeposition process and demonstrated its electro-

chemical behaviors in 1 M H2SO4 aqueous electrolyte. Coating amount 

of POM-Ppy was controlled by deposition times for a chronoampero-

metric technique; deposition time of 700 s was optimized. After opti-

mization, the POM-Ppy/CC electrode exhibited excellent capacitive per-

formances, such as, a high areal capacitance of 561 mF/cm2 at 1 mA/cm2, 

a high rate capability of 85% capacitance retention, and long-term cycling 

stability of 97% capacitance retention over 1000 cycles. 
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