DOI QR코드

DOI QR Code

The Effects of TiC Content on Microstructure of Modified A6013-3wt.%Si Alloy Powder Compact

TiC 첨가량에 따른 개량된 A6013-3wt.%Si 합금 분말성형체의 미세조직 변화

  • Yoo, Hyo-Sang (Automotive Materials & Components R&D Group, Korea Institute of Industrial Technology) ;
  • Kim, Yong-Ho (Automotive Materials & Components R&D Group, Korea Institute of Industrial Technology) ;
  • Son, Hyeon-Taek (Automotive Materials & Components R&D Group, Korea Institute of Industrial Technology)
  • 유효상 (한국생산기술연구원 동력부품소재연구그룹) ;
  • 김용호 (한국생산기술연구원 동력부품소재연구그룹) ;
  • 손현택 (한국생산기술연구원 동력부품소재연구그룹)
  • Received : 2022.02.10
  • Accepted : 2022.02.24
  • Published : 2022.02.28

Abstract

Aluminum-based powders have attracted attention as key materials for 3D printing owing to their low density, high specific strength, high corrosion resistance, and formability. This study describes the effects of TiC addition on the microstructure of the A6013 alloy. The alloy powder was successfully prepared by gas atomization and further densified using an extrusion process. We have carried out energy dispersive X-ray spectrometry (EDS) and electron backscatter diffraction (EBSD) using scanning electron microscopy (SEM) in order to investigate the effect of TiC addition on the microstructure and texture evolution of the A6013 alloy. The atomized A6013-xTiC alloy powder is fine and spherical, with an initial powder size distribution of approximately 73 ㎛ which decreases to 12.5, 13.9, 10.8, and 10.0 ㎛ with increments in the amount of TiC.

Keywords

Acknowledgement

본 논문은 한국생산기술연구원 기업수요기반생산기술 실용화사업 "스마트 모빌리티 핵심 요소기술 개발(kitech JA-22-0005)"의 지원으로 수행한 연구입니다.

References

  1. J. Hirsch and T. Al-Samman: Acta Materialia, 61 (2013) 818. https://doi.org/10.1016/j.actamat.2012.10.044
  2. C. Rui, Y. F. Shi, Q. Y. Xu and B. C. Liu: Transactions of Nonferrous Metals Society of China, 24 (2014) 1645. https://doi.org/10.1016/S1003-6326(14)63236-2
  3. M. Elmadagli, T. Perry and A. T. Alpas: Wear, 262 (2007) 79. https://doi.org/10.1016/j.wear.2006.03.043
  4. L. Kloc, S. Spigarelli, E. Cerri, E. Evangelista and T. G. Langdon: Metall. Mater. Trans. A, 27 (1996) 3871. https://doi.org/10.1007/BF02595636
  5. H. K. Feng, S. R. Yu, Y. L. Li and L. Y. Gong: J. Mater. Process. Technol., 208 (2008) 330. https://doi.org/10.1016/j.jmatprotec.2007.12.121
  6. A. Ambrosi and M. Pumera.: Chem. Soc. Rev., 45 (2016) 2740. https://doi.org/10.1039/c5cs00714c
  7. H. T. Kim and S. C. Kil: J. Weld. Join., 34 (2016) 62.
  8. Y. S. Eom, D. W. Kim, K. T. Kim, S. S. Yang, J. H. Choe, I. J. Son and J. H. Yu: J. Powder Metall., 27 (2020) 103.
  9. Z. Y. Cai, C. Zhang, R. C. Wang, C. Q. Peng, W. U. Wiang, H. P. Li and Y. Ming: Transactions of Nonferrous Metals Society of China, 28 (2018) 1475. https://doi.org/10.1016/s1003-6326(18)64795-8
  10. S. J. Hong: Mater, Trans., 51 (2010) 1055. https://doi.org/10.2320/matertrans.M2010008
  11. A. Bellosi, S. Guicciardi and A. Tampieri: J. Eur. Ceram. Soc., 9 (1992) 83. https://doi.org/10.1016/0955-2219(92)90049-J
  12. X. Cui, Y. Wu, X. Liu, Q. Zhao and G. Zhang: Mater. Des., 86 (2015) 397. https://doi.org/10.1016/j.matdes.2015.06.149
  13. G. S. Upadhyaya: Mater. Des., 22 (2001) 483. https://doi.org/10.1016/S0261-3069(01)00007-3