DOI QR코드

DOI QR Code

Electrochemical Characteristics of Polyoxometalate/Polypyrrole/Carbon Cloth Electrode Synthesized by Electrochemical Deposition Method

전기화학 증착법에 의해 합성된 폴리옥소메탈레이트/폴리피롤/탄소천 전극의 전기화학적 특성

  • Yoon, Jo Hee (Department of Chemical Engineering, Kangwon National University) ;
  • Choi, Bong Gill (Department of Chemical Engineering, Kangwon National University)
  • 윤조희 (강원대학교 화학공학과) ;
  • 최봉길 (강원대학교 화학공학과)
  • Received : 2016.06.30
  • Accepted : 2016.07.11
  • Published : 2016.08.10

Abstract

In this report, polyoxometalte (POM)-doped polypyrrole (Ppy) was deposited on surface of three-dimensional carbon cloth (CC) using an electrodeposition method and its pseudocapacitive behavior was investigated using cyclic voltammetry and galvanostatic charge-discharge. The POM-Ppy coating was thin and conformal which can be controlled by electrodeposition time. As-prepared POM-Ppy/CC was characterized using scanning electron microscope and energy-dispersive X-ray spectroscopy. The unique 3D nanocomposite structure of POM-Ppy/CC was capable of delivering excellent charge storage performances: a high areal capacitance ($561mF/cm^2$), a high rate capability (85%), and a good cycling performance (97% retention).

본 연구에서는 폴리옥소메탈레이트(polyoxometalate, POM)가 도핑된 폴리피롤(polypyrrole, Ppy)을 3차원 구조의 탄소천(carbon cloth, CC) 표면 위에 전기화학적 증착법을 이용하여 합성하고 이의 의사커패시터 특성을 순환전압전류법과 정전류 충전-방전법을 사용하여 분석하였다. POM-Ppy의 코팅은 전기화학적 증착 시간에 따라서 얇은 conformal형태의 코팅으로 조절되었다. 제조된 POM-Ppy/CC의 재료 특성은 전자주사현미경과 X-선 분광분석을 사용하여 분석하였다. POM-Ppy/CC의 3차원 나노복합체 구조는 높은 비정전용량($561mF/cm^2$), 고속 충방전(85% 용량 유지율) 및 장수명 특성(97% 용량 유지율)을 나타내었다.

Keywords

References

  1. C. Zhou, Y. Zhang, Y. Li, and J. Liu, Construction of high-capacitance 3D CoO@polypyrrole nanowire array electrode for aqueous asymmetric supercapacitor, Nano Lett., 13, 2078-2085 (2013). https://doi.org/10.1021/nl400378j
  2. T. Liu, L. Finn, M. Yu, H. Wang, T. Zhai, X. Lu, Y. Tong, and Y. Li, Polyaniline and polypyrrole pseudocapacitor electrodes with excellent cycling stability, Nano Lett., 14, 2522-2527 (2014). https://doi.org/10.1021/nl500255v
  3. L Yang, S. Cheng, Y. Ding, X. Zhu, Z. L. Wnag, and M. Liu, Hierarchical network architectures of carbon fiber paper supported cobalt oxide nanonet for high-capacity pseudocapacitors, Nano Lett., 12, 321-325 (2012). https://doi.org/10.1021/nl203600x
  4. M. Yang, S. B. Hong, and B. G. Choi, Hierarchical core/shell structure of $MnO_2$@polyaniline composites grown on carbon fiber paper for application in pseudocapacitors, Phys. Chem. Chem. Phys., 17, 29874-29879 (2015). https://doi.org/10.1039/C5CP04761G
  5. X. Zhao, B. M. Sanchez, P. J. Dobson, and P. S. Gran, The role of nanomaterials in redox-based supercapacitors for next generation energy storage devices, Nanoscale, 3, 839-855 (2011). https://doi.org/10.1039/c0nr00594k
  6. S. Zhang, and N. Pan, Supercapacitors performance evaluation, Adv. Energy Mater., 5, 1401401-1401420 (2015). https://doi.org/10.1002/aenm.201401401
  7. K. Naoi, S. Ishimoto, J.-I. Miyamoto, and W. Naoi, Second generation 'nanohybrid supercapacitor': evoluation of capacitive energy storage devices, Energy Environ. Sci., 5, 9363-9373 (2012). https://doi.org/10.1039/c2ee21675b
  8. C.-C. Hu, K.-H. Chang, M.-C. Lin, and Y.-T. Wu, Design and tailoring of the nanotubular arrayed architecture of hydrous $RuO_2$ for next generation supercapacitors. Nano Lett., 6, 2690-2695 (2006). https://doi.org/10.1021/nl061576a
  9. M. M. P. Madrigal, F. Estrany, E. Armelin, D. D. Diaz, and C. Aleman, Towards sustainable solid-state supercapacitors: electroactive conducting polymers combined with biohydrogels, J. Mater. Chem. A, 4, 1792-1805 (2016). https://doi.org/10.1039/C5TA08680A
  10. J. Cherusseri and K. K. Kar, Polypyrrole-decorated 2D carbon nanosheet electrodes for supercapacitors with high areal capacitance, RSC Adv., 6, 60454-60466 (2016). https://doi.org/10.1039/C6RA01402J
  11. K. Zhang, L. L. Zhang, X. S. Zhao, and J. Wu, Graphene/polyaniline nanofiber composites as supercapacitor electrodes, Chem. Mater., 22, 1392-1401 (2010). https://doi.org/10.1021/cm902876u
  12. S. Cho, K.-H. Shin, and J. Jang, Enhanced electrochemical performance of highly porous supercapacitor electrodes based on solution processed polyaniline thin films, ACS Appl. Mater. Interfaces, 5, 9186-9193 (2013). https://doi.org/10.1021/am402702y
  13. T. G. Yun, B. I. Hwang, D. Kim, S. Hyun, and S. M. Han, Polypyrrole-$MnO_2$-coated textile-based flexible-stretchable supercapacitor with high electrochemical and mechanical reliability, ACS Appl. Mater. Interfaces, 7, 9228-9234 (2015). https://doi.org/10.1021/acsami.5b01745
  14. C. Bora, J. Sharma, and S. Dolui, Polypyrrole/sulfnoated graphene composite as electrode material for supercapacitor, J. Phys. Chem. C, 118, 29688-29694 (2014). https://doi.org/10.1021/jp511095s
  15. S. Biswas and L. T. Drzal, Multilayered nanoarchitecture of graphene nanosheets and polypyrrole nanowires for high performance supercapacitor electrodes, Chem. Mater., 22, 5667-5671 (2010). https://doi.org/10.1021/cm101132g
  16. F. F. D. Belanger, Electropolymerization of polypyrrole and polyaniline-polypyrrole from organic acidic medium, J. Phys. Chem. B, 103, 9044-9054 (1999). https://doi.org/10.1021/jp9916790
  17. D. Y. Liu and J. R. Reynolds, Dioxythiophene-based polymer electrodes for supercapacitor modules, ACS Appl. Mater. Interfaces, 2, 3586-3593 (2010). https://doi.org/10.1021/am1007744
  18. S. Chen and I. Zhitomirsky, Polypyrrole electrodes doped with sulfanilic acid azochromotrop for electrochemical supercapacitors, J. Power Sources, 243, 865-871 (2013). https://doi.org/10.1016/j.jpowsour.2013.06.098
  19. K. Shi and I. Zhitomirsky, Influence of current collector on capacitive behavior and cycling stability of tiron doped polypyrrole electrodes, J. Power Sources, 240, 42-49 (2013). https://doi.org/10.1016/j.jpowsour.2013.03.163
  20. M. Yang, B. G. Choi, S. C. Jung, Y.-K. Han, Y. S. Huh, and S. B. Lee, Polyoxometalate-coupled graphene via polymeric ionic liquid linker for supercapacitors, Adv. Funct. Mater., 24, 7301-7309 (2014). https://doi.org/10.1002/adfm.201401798
  21. M. Yang, D. S. Kim, J. H. Yoon, S. B. Hong, S. W. Jeong, D. E. Yoo, T. J. Lee, S. J. Lee, K. G. Lee, and B. G. Choi, Nanopillar films with polyoxometalate-doped polyaniline for electrochemical detection of hydrogen peroxide, Analyst, 141, 1319-1324 (2016). https://doi.org/10.1039/C5AN02134K
  22. J. Hu, Y. Ji, W. Chen, C. Streb, and Y.-F. Song, "Wiring" redox-active polyoxometalates to carbon nanotubes using a sonication-driven periodic functionalization strategy, Energy Environ. Sci., 9, 1095-1101 (2016). https://doi.org/10.1039/C5EE03084F
  23. A. K. Cuentas-Gallegos, M. Lira-Cantu, N. Casan-Pastor, and P. Gomez-Romero, Nanocomposite hybrid molecular materials for application in solid-state electrochemical supercapacitors, Adv. Funct. Mater., 15, 1125-1133 (2005). https://doi.org/10.1002/adfm.200400326
  24. G. M. Suppes, B. A. Deore, and M. S. Freund, Porous conducting polymer/heteropolyoxometalate hybrid material for electrochemical supercapacitor applications, Langmuir, 24, 1064-1069 (2008). https://doi.org/10.1021/la702837j
  25. N. Anwar, M. Vagin, F. Laffir, G. Armstrong, C. Dickinson, and T. McCormac, Transition metal ion-substituted polyoxometalates entrapped in polypyrrole as an electrochemical sensor for hydrogen peroxide, Analyst, 137, 624-630 (2012). https://doi.org/10.1039/C1AN15665A
  26. Q. Cheng, J. Tang, J. Ma, H. Zhang, N. Shinya, and L.-C. Qin, Polyaniline-coated electro-etched carbon fiber cloth electrodes for supercapacitors, J. Phys. Chem. C, 115, 23584-23590 (2011). https://doi.org/10.1021/jp203852p
  27. H. Wang and X. Wang, Growing nickel cobaltite nanowires and nanosheets on carbon cloth with different pseudocapacitive performance, ACS Appl. Mater. Interfaces, 5, 6255-6260 (2013). https://doi.org/10.1021/am4012484
  28. G. Bajwa, M. Genovese, and K. Lian, Multilayer polyoxometalates-carbon nanotube composites for electrochemical capacitors, ECS J. Solid State Sci. Technol., 2, M3046-M3050 (2013). https://doi.org/10.1149/2.005310jss

Cited by

  1. A multilayer assembly of two mixed-valence Mn16-containing polyanions and study of their electrocatalytic activities towards water oxidation vol.47, pp.21, 2018, https://doi.org/10.1039/C8DT00927A