• Title/Summary/Keyword: U.A.V

Search Result 1,745, Processing Time 0.031 seconds

ON A FUNCTIONAL EQUATION ARISING FROM PROTH IDENTITY

  • Chung, Jaeyoung;Sahoo, Prasanna K.
    • Communications of the Korean Mathematical Society
    • /
    • v.31 no.1
    • /
    • pp.131-138
    • /
    • 2016
  • We determine the general solutions $f:\mathbb{R}^2{\rightarrow}\mathbb{R}$ of the functional equation f(ux-vy, uy+v(x+y)) = f(x, y)f(u, v) for all x, y, u, $v{\in}\mathbb{R}$. We also investigate both bounded and unbounded solutions of the functional inequality ${\mid}f(ux-vy,uy+v(x+y))-f(x,y)f(u,v){\mid}{\leq}{\phi}(u,v)$ for all x, y, u, $v{\in}\mathbb{R}$, where ${\ph}:\mathbb{R}^2{\rightarrow}\mathbb{R}_+$ is a given function.

DOUBLE SEMIOPEN SETS ON DOUBLE BITOPOLOGICAL SPACES

  • Lee, Eun Pyo;Lee, Seung On
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.26 no.4
    • /
    • pp.691-702
    • /
    • 2013
  • We introduce the concepts of double bitopological spaces as a generalization of intuitionistic fuzzy topological spaces in $\check{S}$ostak's sense and Kandil's fuzzy bitopological spaces. Also we introduce the concept of (${\tau}^{{\mu}{\gamma}}$, $U^{{\mu}{\gamma}}$)-double (r, s)(u, v)-semiopen sets and double pairwise (r, s)(u, v)-semicontinuous mappings in double bitopological spaces and investigate some of their characteristic properties.

ON THE MINIMAL ENERGY SOLUTION IN A QUASILINEAR ELLIPTIC EQUATION

  • Park, Sang-Don;Kang, Chul
    • Communications of the Korean Mathematical Society
    • /
    • v.18 no.1
    • /
    • pp.65-73
    • /
    • 2003
  • In this paper we seek a positive, radially symmetric and energy minimizing solution of an m-Laplacian equation, -div$($\mid${\nabla}u$\mid$^{m-2}$\mid${\nabla}u)\;=\;h(u)$. In the variational sense, the solutions are the critical points of the associated functional called the energy, $J(v)\;=\;\frac{1}{m}\;\int_{R^N}\;$\mid${\nabla}v$\mid$^m\;-\;\int_{R^N}\;H(v)dx,\;where\;H(v)\;=\;{\int_0}^v\;h(t)dt$. A positive, radially symmetric critical point of J can be obtained by solving the constrained minimization problem; minimize{$\int_{R^N}$\mid${\nabla}u$\mid$^mdx$\mid$\;\int_{R^N}\;H(u)d;=\;1$}. Moreover, the solution minimizes J(v).

BLOW UP OF SOLUTIONS TO A SEMILINEAR PARABOLIC SYSTEM WITH NONLOCAL SOURCE AND NONLOCAL BOUNDARY

  • Peng, Congming;Yang, Zuodong
    • Journal of applied mathematics & informatics
    • /
    • v.27 no.5_6
    • /
    • pp.1435-1446
    • /
    • 2009
  • In this paper we investigate the blow up properties of the positive solutions to a semi linear parabolic system with coupled nonlocal sources $u_t={\Delta}u+k_1{\int}_{\Omega}u^{\alpha}(y,t)v^p(y,t)dy,\;v_t={\Delta}_v+k_2{\int}_{\Omega}u^q(y,t)v^{\beta}(y,t)dy$ with non local Dirichlet boundary conditions. We establish the conditions for global and non-global solutions respectively and obtain its blow up set.

  • PDF

Numerical solution for nonlinear klein-gordon equation by bollocation method with respect to spectral method

  • Lee, In-Jung
    • Journal of the Korean Mathematical Society
    • /
    • v.32 no.3
    • /
    • pp.541-551
    • /
    • 1995
  • The nonlinear Klein Gordon equation $$ (1) \frac{\partial t^2}{\partial^2 u} - \Delta u + V_u(u) = f $$ where $\Delta$ is the Laplacian operator in $R^d (d = 1, 2, 3), V_u(u)$ is the derivative of the "potential function" V, and f is a source term independent of the solution u, in various areas of mathematical physics.l physics.

  • PDF

Phytosociological Studies on the Beech(Fagus multinervis Nakai) Forest and the Pine (Pinus parviflora S. et Z.) Forest of Ulreung Island, Korea (한국 울릉도의 너도밤나무(Fagus multinervis Nakai)림 및 섬잣나무(Pinus parviflora S. et Z.)림의 식물사회학적 연구)

  • 김성덕
    • Journal of Plant Biology
    • /
    • v.29 no.1
    • /
    • pp.53-65
    • /
    • 1986
  • The montane forests of Ulreung Island, Korea, were investigated by the ZM school method. By comparing the montane forests of this island with those of Korean Peninsula and of Japan, a new order, F a g e t a l i a m u l t i n e r v i s, a new alliance, F a l g i o n m u l t i n e r v i s, a new association, H e p a t i c o-F a g e t u m m u l t i n e r v i s and Rhododendron brachycarpum-Pinus parviflora community were recognized. The H e p a t i c o - F a g e t u m m u l t i n e r v i s was further subdivided into four subassociations; Subass. of Sasa kurilensis, Subass. of Rumohra standishii, Subass. of Rhododendron brachycarpum and Subass. of typicum. Each community was described in terms of floristic, structural and environmental features.

  • PDF

MULTIPLE SOLUTIONS OF A PERTURBED YAMABE-TYPE EQUATION ON GRAPH

  • Liu, Yang
    • Journal of the Korean Mathematical Society
    • /
    • v.59 no.5
    • /
    • pp.911-926
    • /
    • 2022
  • Let u be a function on a locally finite graph G = (V, E) and Ω be a bounded subset of V. Let 𝜀 > 0, p > 2 and 0 ≤ λ < λ1(Ω) be constants, where λ1(Ω) is the first eigenvalue of the discrete Laplacian, and h : V → ℝ be a function satisfying h ≥ 0 and $h{\not\equiv}0$. We consider a perturbed Yamabe equation, say $$\{\begin{array}{lll}-{\Delta}u-{\lambda}u={\mid}u{\mid}^{p-2}u+{\varepsilon}h,&&\text{ in }{\Omega},\\u=0,&&\text{ on }{\partial}{\Omega},\end{array}$$ where Ω and ∂Ω denote the interior and the boundary of Ω, respectively. Using variational methods, we prove that there exists some positive constant 𝜀0 > 0 such that for all 𝜀 ∈ (0, 𝜀0), the above equation has two distinct solutions. Moreover, we consider a more general nonlinear equation $$\{\begin{array}{lll}-{\Delta}u=f(u)+{\varepsilon}h,&&\text{ in }{\Omega},\\u=0,&&\text{ on }{\partial}{\Omega},\end{array}$$ and prove similar result for certain nonlinear term f(u).

EXISTENCE AND NONEXISTENCE OF SOLUTIONS FOR A CLASS OF HAMILTONIAN STRONGLY DEGENERATE ELLIPTIC SYSTEM

  • Nguyen Viet Tuan
    • Communications of the Korean Mathematical Society
    • /
    • v.38 no.3
    • /
    • pp.741-754
    • /
    • 2023
  • In this paper, we study the existence and nonexistence of solutions for a class of Hamiltonian strongly degenerate elliptic system with subcritical growth $$\left{\array{-{\Delta}_{\lambda}u-{\mu}v={\mid}v{\mid}^{p-1}v&&\text{in }{\Omega},\\-{\Delta}_{\lambda}v-{\mu}u={\mid}u{\mid}^{q-1}u&&\text{in }{\Omega},\\u=v=0&&\text{ on }{\partial}{\Omega},}$$ where p, q > 1 and Ω is a smooth bounded domain in ℝN, N ≥ 3. Here Δλ is the strongly degenerate elliptic operator. The existence of at least a nontrivial solution is obtained by variational methods while the nonexistence of positive solutions are proven by a contradiction argument.

POSITIVE SOLUTION FOR A CLASS OF NONLOCAL ELLIPTIC SYSTEM WITH MULTIPLE PARAMETERS AND SINGULAR WEIGHTS

  • AFROUZI, G.A.;ZAHMATKESH, H.
    • Journal of applied mathematics & informatics
    • /
    • v.35 no.1_2
    • /
    • pp.121-130
    • /
    • 2017
  • This study is concerned with the existence of positive solution for the following nonlinear elliptic system $$\{-M_1(\int_{\Omega}{\mid}x{\mid}^{-ap}{\mid}{\nabla}u{\mid}^pdx)div({\mid}x{\mid}^{-ap}{\mid}{\nabla}u{\mid}^{p-2}{\nabla}u)\\{\hfill{120}}={\mid}x{\mid}^{-(a+1)p+c_1}\({\alpha}_1A_1(x)f(v)+{\beta}_1B_1(x)h(u)\),\;x{\in}{\Omega},\\-M_2(\int_{\Omega}{\mid}x{\mid}^{-bq}{\mid}{\nabla}v{\mid}^qdx)div({\mid}x{\mid}^{-bq}{\mid}{\nabla}v{\mid}^{q-2}{\nabla}v)\\{\hfill{120}}={\mid}x{\mid}^{-(b+1)q+c_2}\({\alpha}_2A_2(x)g(u)+{\beta}_2B_2(x)k(v)\),\;x{\in}{\Omega},\\{u=v=0,\;x{\in}{\partial}{\Omega},$$ where ${\Omega}$ is a bounded smooth domain of ${\mathbb{R}}^N$ with $0{\in}{\Omega}$, 1 < p, q < N, $0{\leq}a$ < $\frac{N-p}{p}$, $0{\leq}b$ < $\frac{N-q}{q}$ and ${\alpha}_i,{\beta}_i,c_i$ are positive parameters. Here $M_i,A_i,B_i,f,g,h,k$ are continuous functions and we discuss the existence of positive solution when they satisfy certain additional conditions. Our approach is based on the sub and super solutions method.