• Title/Summary/Keyword: 휘발제거율

Search Result 97, Processing Time 0.028 seconds

실리콘 기판위의 증착된 AAO Barrier Layer의 $Cl_2/BCl_3$ Neutral Beam Etching

  • Kim, Chan-Gyu;Min, Gyeong-Seok;O, Jong-Sik;Yeom, Geun-Yeong
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2011.05a
    • /
    • pp.135-136
    • /
    • 2011
  • 본 연구에서는 실리콘 기판위의 형성된 AAO (Anodic Aluminum Oxide)의 barrier layer를 $Cl_2/BCl_3$ gas mixture에서 Neutral Beam Etching (NBE)과 Ion Beam Etching (IBE)로 각각 식각한 후 그 결과를 비교하였다. 이온빔의 경우 나노사이즈의 AAO pore의 charging에 의해 pore 아래쪽의 위치한 barrier layer를 어떤 식각조건에서도 제거하지 못하였다. 하지만, charging effect가 없고, 높은 중성화율을 나타내는 low angle forward reflected 방식의 neutral beam etching (NBE)에서는 $BCl_3$-rich $Cl_2/BCl_3$ gas mixture인 식각조건에서 AAO pore에 휘발성 $BO_xCl_y$를 형성하면서 barrier layer를 제거할 수 있었다.

  • PDF

Removal of VOC compounds in the vent of a pharmaceutical plant using a pilot-scale biofilter (Pilot-scale 바이오필터를 이용한 제약공정 배출가스의 처리)

  • Ryu, Hee-Wook;Lee, Tae-Ho;Park, Chang-Ho
    • KSBB Journal
    • /
    • v.23 no.6
    • /
    • pp.470-473
    • /
    • 2008
  • A pilot-plant biofilter ($1750\;m\;W{\times}2750\;mm\;L{\times}2000\;mm\;H$) packed with polyurethane foam ($20\;m\;W{\times}20\;mm\;L{\times}20\;mm\;H$) was installed in an pharmaceutical plant emitting gas streams containing n-hexane and alcohols. The biofilter was successfully operated for 74 days under highly fluctuating incoming concentrations at a residence time of 12.8-24.8 sec. Alcohols and n-hexane were removed by more than 90% from 5 and 20 days after start up, respectively. Malodor was also removed more than 95% from 20 days after start up.

Night Soil Treatment by Anaerobic Sequencing Batch Reactor (혐기성 연속 회분식 반응조에 의한 분뇨처리)

  • 허준무;박종안
    • Journal of environmental and Sanitary engineering
    • /
    • v.15 no.2
    • /
    • pp.75-84
    • /
    • 2000
  • 운전 온도 $35^{\circ}C$, 평균 유기물부하 $3.1{\;}kgCOD/m^3/day$ 및 수리학적체류시간 10일에서 혐기성 연속회분식공정에 의한 분뇨처리를 수행하였다. 공정의 평가는 대조 소화조로 완전혼합형의 소화조와 병행하여 수행되었다. 본 실험에서 분뇨는 고농도의 암모니아성 질소와 침전성 고형물을 함유하고 있음에도 불구하고 희석 없이 소화가 가능하였다. 혐기성 연속회분식공정에서 고형물은 급속하게 증가하여 완전혼합형의 대조 소화조에 비하여 소화조내 고형물(biomass)의 농도가 2.4배로 증가하였고, 가스발생량에 있어서도 대조 소화조에 비해 현격한 증가를 보였으며 그 증가율은 205~220%에 달했다. 부가적인 침전 시설이 없이도 혐기성 연속회분식공정의 유출수질이 대조 소화조 보다 높게 나타났는데 상징액 기준으로 휘발성고형물 제거율은 혐기성 연속회분식공정이 대조 소화조 보다 12~14% 높았다. 한편, 혐기성 연속회분식공정의 운전인자로 반응/침강비(R/T ratio)를 조사한 결과 R/T비가 1인 경우가 3의 경우보다 가스발생량, 메탄함량 및 유기물 제거율이 약간 높았으나 큰 차이는 없었다. 위의 실험결과들로부터 혐기성 연속회분식공정은 고농도의 암모니아성 질소와 침전성 유기물을 함유하고 있는 분뇨의 처리에 효과적이고 안정적인 공정으로 판단된다.

  • PDF

Photocatalytic Degradation of Methyl-tertiary butyl ether using Element-Enhanced Photocatalyst

  • Yang, Chang-Hui;Sin, Myeong-Hui;Jang, Jong-Dae;Lee, Jin-U;Choe, Seong-Rak;Jo, Wan-Geun
    • Proceedings of the Korean Environmental Sciences Society Conference
    • /
    • 2008.11a
    • /
    • pp.110-113
    • /
    • 2008
  • 최근 가시광선에서 응답하는 광촉매를 이용하여 저농도의 일반적인 실내 대기 오염물질 제어를 위한 적용가능성에 대해 많은 평가가 있어왔다. 가시광선에서 활성을 보이는 질소 원소가 도핑된 TiO$_2$광촉매를 이용하여 대표적인 휘발성유기화합물질들 중에 하나인 MTBE의 분해율에 대한 실험을 실시하였다. 본 연구에서 여러 가지 변수들 중에 농도와 상대습도에 따라 MTBE의 분해율에 대하여 실험하였으며, 본 연구의 실험조건하에서 질소가 도핑된 TiO$_2$ 광촉매를 통해서 효과적으로 MTBE가 제거됨을 확인 할 수 있었다.

  • PDF

Anaerobic Digestion Fish Offal(I): Effect of Reactor Configuration and Sludge Bed Fluidization on Start-up of Digester (어류 폐기물의 혐기성소화 처리(I): 반응조 형상 및 슬러지층 유동화가 소화조 Start-up에 미치는 영향)

  • Jeong Byung-Gon;Kim Byung-Hyo
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.9 no.2
    • /
    • pp.72-78
    • /
    • 2006
  • Effect of organic loading rate on digester performance was evaluated under the conditions of same surface area/reactor volume ratio and different reactor diameter. At the low loading rate of $0.4\;kg\;COD/m^3{\cdot}d$, high rate of organic removal could be obtained regardless of reactor diameter. It can be estimated that reactor configuration can not affect reactor performance at the low loading rate. However, different performance depending on reactor diameter was observed at the organic loading rate of $6\;kg\;COD/m^3{\cdot}d$. That is, volatile acid accumulation and low COD removal efficiency was observed in reactor having 6.4 cm diameter, while volatile acid was not accumulated at all and high COD removal efficiency was observed in reactor having 3 cm diameter. Such a difference of reactor performance depending on reactor diameter can be explained that sludge bed can be fluidized by evolved gas bubble in narrow reactor while sludge bed can not be fluidized by evolved gas bubble only in wide reactor. At a high organic loading rate of $20\;kg\;COD/m^3{\cdot}d$, it can be judged that there is no relation between reactor configuration and reactor performance because all reactors showed very low COD removal efficiencies regardless of reactor diameter. Sludge bed fluidization is one of the most important factors in achieving efficient start-up of anaerobic digester. Narrow and tall type reactor is favorable condition for making sludge bed fluidization at a constant surface area/reactor volume ratio. Thus, it can be judged that reactor configuration and sludge bed fluidization have great influence to reactor performance.

  • PDF

Effects of Initial Concentration and Nutrients in Treatment of petroleum Hydrocarbon Contaminated Soils using a Slurry-Phase Bioreactor (슬러리상 생물반응기를 이용한 석유계탄화수소 오염토양의 처리에 있어서 초기농도 및 영양소의 영향)

  • 김수철;남궁완;박대원
    • Journal of Korea Soil Environment Society
    • /
    • v.3 no.3
    • /
    • pp.45-53
    • /
    • 1998
  • The purpose of this study was to evaluate effects of initial concentration and nutrients in treatment of petroleum hydrocarbon contaminated soils. The reactor used in this study was slurry-phase bioreactor of in-vessel type. Performance results on treatment of diesel fuel contaminated soils and micorbial growth were generated at the bench-scale level. The fate of TPH(Total Petroleum Hydrocarbon) and the microbial growth were evaluated in combination with biodegradation rate. Effect of initial loading levels of 50,000 and 100,000mg TPH/kg soil was studied. Performance results with two reactors were showed at the total TPH removal rate of 90.5% and 90.8%, respectively. However, the reactor with the initial concentration of 50,000mg TPH/kg soil showed higher biological TPH removal efficiency except for removal by volatilization than the other Although the different amount of nutrients was applied in two reactors, there was no remarkable difference in microbial growth rate. However, considerable factor in this results was that applied different initial concentration to two reactors. Although initial concentration was two times higher than it applied to the reactor without addition of nutrients, in total and biological TPH removal rate the reactor with addition of nutrients showed a higher than the other.

  • PDF

Characteristics of Toluene Removal in a Biotrickling Filter with Zeolite/Polyethylene Composite Media (제올라이트/폴리에틸렌 복합 담체를 이용한 Biotrickling Filter에서 톨루엔 제거 특성)

  • Hong, Sung-Ho;Lee, Chung-Sik;Lee, Jea-Keun
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.6
    • /
    • pp.573-580
    • /
    • 2005
  • This study was to investigate the removal characteristics of toluene in a gas stream by using a biotrickling filter packed with zeolite-contained polyethylene media. The specific surface area and the void fraction of the media were $500\;m^2/m^3$ and 82%. The surface roughness of the media was higher than that of pure polyethylene media. The toluene removal efficiency decreased with increasing the inlet toluene concentration and gas flow rate. The maximum elimination capacity of toluene in the biotrickling filter was $64\;g/m^3{\cdot}hr$. During 200 days operation, toluene removal efficiency was maintained from 90% to 98% until 167 days, hereafter, it was rapidly reduced with a rise in pressure drop due to an excess proliferation of biomass on the media. Pressure drop and removal capability of the biotrickling filter was fully recovered after backwashing.

Evaluation of Hybrid Thermal Oxidation(HTO) System for Removal of MEK(Methyl ethyl ketone) and Toluene (복합열산화(Hybrid Thermal Oxidation) 시스템을 이용한 MEK(Methyl ethyl ketone)와 Toluene 제거 평가)

  • Jang, Duhun;Bae, Wookeun;Kim, Moonil;Kim, Kyungtae
    • Journal of the Korean GEO-environmental Society
    • /
    • v.11 no.6
    • /
    • pp.31-37
    • /
    • 2010
  • In this study, optimization of MEK and Toluene removal was conducted by HTO(Hybrid Thermal Oxidation) system. HTO system has a multi-bed reaction plate and the plate consisted of wasted heat regeneration part and catalysis part. VOCs removal by HTO system was estimated by changing inlet flow rates with different valve changing times. Under $350^{\circ}C$ of combustion temperature, VOCs was fully converted and the equivalent conversion was 100%. The thermal oxidation efficiency, related to the amount of injected fuel into HTO system and the valve change time, was revealed at the level of 93.0~96.3%. In case of MEK removal by HTO system, the efficiency was ranged from 91.1 to 97.1%. Also, Toluene removal efficiency(93.2~97.4%) was good and stable with respect to the operating conditions. Considering above results, it was proved that HTO system could be a stable and compact system for VOCs, especially MEK and Toluene with high removal efficiency.

Catalytic Oxidation of Volatile Organic Compounds Over Spent Three-Way Catalysts (배기가스 정화용 폐 자동차 촉매를 이용한 휘발성 유기화합물의 제거)

  • Shim, Wang Geun;Kim, Sang Chai
    • Applied Chemistry for Engineering
    • /
    • v.19 no.5
    • /
    • pp.574-581
    • /
    • 2008
  • The optimum regeneration conditions for the regeneration of three way spent catalysts (TWCs), which were taken from automobiles with different driving conditions, were investigated to evaluate the suitability as alternative catalysts for removing VOCs. The spent catalysts were washed with five different acids ($HNO_3$, $H_2SO_4$, $C_2H_2O_4$, $C_6H_8O_7$, and $H_3PO_4$) to remove contaminants and examine the optimum conditions for recovering the catalytic activity. The physicochemical properties of spent and its regenerated TWCs were evaluated by using nitrogen adsorption-desorption isotherms, XRD, and ICP. The relative atomic ratios of contaminants and platinum group metals (PGMs) of the spent TWCs were greatly dependent on the placed positions. The main contaminants formed were lubricant oil additives and metallic components. Also, the regeneration treatment increased the PGMs ratio, BET surface area, and average pore diameter of TWCs. The catalytic activity results indicated that the spent TWCs have the possibility for removing VOCs. Moreover, the employed acid treatments greatly enhanced the catalytic activity of the spent TWCs. Especially, nitric and oxalic acids provided the most improvement in the catalytic behavior. The catalytic activities of the regenerated TWCs were significantly influenced by the containing platinum ratios rather than the removal ratios of contaminants and the changes in the structural properties offered by the acid treatments.

Rapid Analytical Method of Volatile- and Semivolatile Organic Compounds in Water and their Monitoring in Water Treatment Plants (물 시료 중 휘발성 및 반휘발성 유기물질들의 빠른 분석법 및 정수처리 단계별 모니터링)

  • Shin, Ho-Sang;Ahn, Hye-Sil
    • Analytical Science and Technology
    • /
    • v.17 no.3
    • /
    • pp.240-250
    • /
    • 2004
  • A gas chromatography-mass spectrometric (GC-MS) assay method was developed for the rapid and sensitive determination of volatile- and semivolatile organic compounds in water. Two hundreds mL of water sample was extracted in a 250 mL separatory funnel with 1 ml of pentane at pH 6.5. Fluorobenzene and 1,2-dichlorobenzene-d4 as internal standards were added to water sample and the solution was mechanically shaken for 5 min and analyzed by GC-MS (selected ion monitoring) without more any concentration or purification steps. The peaks had good chromatographic properties and the extraction of these compounds from water also gave relatively high recoveries with small variations. The range of detection limits of the assay was 0.5-10 ng/L. Turnaround time for up to about 40 samples was one day. This method is simple, convenient, and can be learned easily by relatively inexperienced personnel. This method was used to analyze 15 volatile- and semivolatile organic compounds in water of a Lake, and raw and treated water from three Water Treatment Plants in Korea. As the analytical results, benzene, toluene, xylene, isopropylbenzene, 1,3,5-trimethylbenzene, 1,2,4-trimethylbenzene, naphthalene and 2,4,6-trichlorophenol were detected at concentrations of up to 0.4, 1.9, 1.3, 0.2, 1.8, 13.0, 1.7 and $1.1{\mu}g/L$, respectively. But chlorobenzene, trichloroethylene, tetrachloroethylene, ethylbenzene, n-butylbenzene and dibromochloropropane levels during that period were not significant. The removal effect of the compounds in three Water Treatment Plants was calculated. The compounds studied were generally removed during conventional water treatment, especially during the active carbon filtration.