Vol.17, No.3, 240-250, 2004 Printed in the Republic of Korea

물 시료 중 휘발성 및 반휘발성 유기물질들의 빠른 분석법 및 정수처리 단계별 모니터링

신호상*·안혜실**

*공주대학교, 환경교육과, 약물남용연구소, **공주대학교, 환경과학과 대학원 (2004. 1. 15 접수, 2004. 3. 11 승인)

Rapid Analytical Method of Volatile- and Semivolatile Organic Compounds in Water and their Monitoring in Water Treatment Plants

Ho-Sang Shin* and Hye-Sil Ahn**

*Department of Environmental Education, Drug Abuse Research Center, Kongju National University, Kongju, 314-701 Korea.

**Department of Environmental Science, Kongju National University, Kongju, 314-701 Korea.

(Received Jan. 15, 2004, Accepted Mar. 11, 2004)

요 약: 가스크로마토그래프-질량분석기를 사용한 물 시료 중 15종류의 휘발성 및 반휘발성 유기물질들의 고감도 및 빠른 분석법이 확립되었다. 물 시료는 200 mL를 분액깔대기에 넣고 pH 6.5에서 n-pentane 1 mL를 사용하여 추출하였다. Fluorobenzene과 1,2-dichlorobenzene-d₄을 내부표준물질들로 사용하였고 혼합용액은 진탕 기에서 5분간 추출하여 더 이상의 농축이나 정제과정 없이 GC-MS (selected ion monitoring)로 정량분석 하였다. 피크모양은 매우 좋았고, 작은 편차로서 75% 이상의 양호한 회수율을 보였고 검출한계는 0.5-10 ng/L의 분포를 보였다. 개발된 분석법으로 GC-MS 1대당 1일 40개의 시료 분석이 가능하고 매우 간단하여 숙련되지 않은 사람들도 쉽게 사용할 수 있어 각 정수장 등 현장에서 사용하기에 적합하다. 개발된 방법을 사용하여 한국의한 호수와 3개 정수장의 원수 및 처리수에서 휘발성 및 반 휘발성 유기물질들을 모니터링 하였다. 한국의 한호수와 3개의 정수장에서 시료를 채취하여 정량 분석한 결과 benzene, toluene, xylene, isopropylbenzene, 1,3,5-trimethylbenzene, 1,2,4-trimethylbenzene, naphthalene과 2,4,6-trichlorophenol은 각각 0.4, 1.9, 1.3, 0.2, 1.8, 13.0, 1.7 그리고 1.1 μg/L까지 검출되었으나 chlorobenzene, trichloroethylene, tetrachloroethylene, ethylbenzene, n-butylbenzene과 dibromochloropropane의 농도는 같은 기간 동안에 검출한계 이내의 값을 보였다. 이 화합물들의 정수처리과정에서의 제거효율을 조사한 결과 대부분은 정수처리과정에서 제거되는 것으로 조사되었다.

Abstract: A gas chromatography-mass spectrometric (GC-MS) assay method was developed for the rapid and sensitive determination of volatile- and semivolatile organic compounds in water. Two hundreds mL of water sample was extracted in a 250 mL separatory funnel with 1 ml of pentane at pH 6.5. Fluorobenzene and 1,2-dichlorobenzene-d₄ as internal standards were added to water sample and the solution was mechanically shaken for 5 min and analyzed by GC-MS (selected ion monitoring) without more any concentration or purification steps.

★ Corresponding author

Phone: +82+(0)41-850-8811 Fax: (0)41-850-8810

E-mail: hshim@kongju.ac.kr

The peaks had good chromatographic properties and the extraction of these compounds from water also gave relatively high recoveries with small variations. The range of detection limits of the assay was 0.5-10 ng/L. Turnaround time for up to about 40 samples was one day. This method is simple, convenient, and can be learned easily by relatively inexperienced personnel. This method was used to analyze 15 volatile- and semivolatile organic compounds in water of a Lake, and raw and treated water from three Water Treatment Plants in Korea. As the analytical results, benzene, toluene, xylene, isopropylbenzene, 1,3,5-trimethylbenzene, 1,2,4-trimethylbenzene, naphthalene and 2,4,6-trichlorophenol were detected at concentrations of up to 0.4, 1.9, 1.3, 0.2, 1.8, 13.0, 1.7 and 1.1 μ g/L, respectively. But chlorobenzene, trichloroethylene, tetrachloroethylene, ethylbenzene, n-butylbenzene and dibromochloropropane levels during that period were not significant. The removal effect of the compounds in three Water Treatment Plants was calculated. The compounds studied were generally removed during conventional water treatment, especially during the active carbon filtration.

Key words: VOCs, GC-MS, LLE, removal effect

1. 서 론

물은 인간이 살아가는데 필수적인 요소이며 깨끗한 물은 건강한 삶을 위해 기본적이다. 최근 인구증가, 도시화, 산업 활동의 고도화, 생활양식의 변화 등에 따라 각종 오염물질의 발생이 증가하게 되었다. 우리나라는 용수공급의 대부분을 지표수인 호소나 하천에 의존하고 있다. 특히 하천에 댐을 건설하면서 조성된 인공 호소는 용수 공급 면에서 매우 중요한 역할을 하고 있으며 호소의 이용이 증가되면서 상수를 공급하는 대형 호소는 적정량의 수량을 확보하기 위해 긴 체류시간을 가지므로 축산폐수, 생활하수 및 공장 폐수 등의 대량 오염물질의 유입으로 인해 오염 사고에 매우 취약하다. 특히 휘발성 유기오염물질, 유기용제, 페놀, 농약, 다환 방향족 탄화수소 등의 각종 유기화합물에 의한 수질오염은 인간의 건강에 큰 영향을 미치게 되므로 끊임없는 관심의 대상이 되어왔다.

현재 환경부는 먹는 물에서는 각종 휘발성 유기화합물들을 규제하고 있으나, 하천 및 호소 수에서는 규제하고 있지 않아 이들이 원수 중에 얼마나 있고 정수처리 공정과정에서 얼마나 제거되고 있는지가 의문이다. 이와 같이 정수처리 효율을 조사하기위해서는 ng/L의범위의 측정이 가능한 고감도 분석법이 필요하다.

현재까지 물 시료 중에 휘발성 오염물질 (VOCs)의 분석은 일반적으로 SPME법, closed-loop stirring (CLSA) 법, purge & trap법, headspace법, solid phase extraction법 및 liquid-liquid extraction (LLE)법 등과 같은 방법에 의 해 분석되어왔다.

SPME법은 SPE (고체상 추출법)와 원리는 같으나, 시료 량이 적게 요구되며, 고체상이 아주 작다는 특징이 있다. 휘발성이 강한 물질 (VOCs)을 분석 할 때에는 polydimethylsiloxane/divinylbenzene (PDMS/DVB)로 코팅된 fiber를 주로 사용하며¹, 이 fiber를 일정량의 용매가답긴 병에 담근 후 (용매에 닿지 않도록), GC의 injection port에 바로 주입하여 일정시간 동안 탈착시키는 방법이다. 재현성이 비교적 좋고 검출한계가 ppt 수준으로 낮다는 장점이 있으나, fiber 한 개당 처리 가능한 시료가15개정도로 비용이 많이 들며², 비점이 220 ℃이하의 휘발성 유기물질만을 사용할 수 있다는 단점이 있으며 또한 공기 중의 유기물질을 흡착하므로 주의해야 한다.

Closed-loop stirring (CLSA)법은 오래전부터 물 시료 중에 VOCs 물질의 추출 및 정량에 널리 사용되어 왔다. $^{3-7}$ CLSA법은 검출한계가 매우 낮으나, 시간이 매우 오래 걸리며, 경우에 따라 유독한 용매인 CS_2 을 사용하며, 정밀도가 다소 떨어진다는 단점이 있다.

Purge & Trap법은 용매를 필요치 않아 환경적으로 안전하며 시간도 짧게 소요된다는 장점이 있으나 검출 한계가 ppb 수준이며, 기존의 장비로는 불가능하여 새 로운 장비를 구입해야한다는 단점이 있다.^{5, 8-10}

Headspace법은 시료에 포함된 휘발성 유기물질을 분석하기 위해 여러 가지 방법을 이용하여 분석물질을 휘발시키는 SPME법과 원리 면에서는 비슷하지만 SPME법은 fiber를 이용하여 휘발된 양을 모두 흡착하여 injection port에서 전부 탈착시켜 검출하므로 감도가 좋으나

headspace법은 휘발된 양 중에서 일부를 주사기로 취하여 주입하므로 상대적으로 검출한계가 매우 높다. 11-12

Solid phase extraction법은 재현성이 비교적 좋으며 검출한계도 매우 낮으나 새로운 장비를 구입해야 한다 는 단점이 있다.

LLE법은 고전적인 방법으로서 용매의 양을 많이 사용하고, 농축 효율이 좋지 않다.¹³⁻¹⁴

본 연구에서는 고전적인 추출방법을 보완하여 농축 과정 없이 GC-MS (SIM)을 사용한 고감도 분석법을 개 발하는 것을 목표로 하였으며, 개발된 방법을 사용하여 하천 및 호소를 원수로 하는 3개의 정수장의 처리단계 별 오염물질의 함량을 측정하고자하였다.

2. 실험 방법

2.1. 재료 및 시약

본 연구에 사용된 모든 용매는 잔류농약 분석용을 이용 하였으며 분석 대상 물질인 오염기인 냄새물질의 표준물 질인 chlorobenzene, 1,3,5-trimethylbenzene, benzene, toluene, ethylbenzene, o,m,p-xylene, trichloroethylene, tetrachloroethylene, n-butylbenzene, isopropylbenzene, 1,2,4-trimethylbenzene, dibromochloropropane, naphthalene, 2,4,6-trichlorophenol과 내부표준물질 (ISTD)인 fluorobenzene 및 1,2-dichlorobenzene-d₄은 Supelco (미국) 또는 Aldrich (미국)사로부터 구입하여 사용하였다.

2.2. 시료채취

2002년 7월부터 10월까지 D호수를 원수로 사용하는 2개 정수장 (S정수장과 J정수장)의 원수와 각 단계별처리수와 G하천수를 원수로 사용하는 1개 정수장 (O정수장)의 원수 및 각 단계별처리수 2 L를 6 M HCl 2-3 방울을 넣은 갈색 유리병에 빈 공간 없이 담아 분석전까지 4 ℃의 암소에서 보관하여 사용하였다.

2.3. 측정기기 및 조건

Agilent 6890 gas chromatography (GC)에 direct interface 로 연결된 5973-N MSD를 사용하였다. 모든 시료는 HP 7673A autosampler를 사용하여 GC에 주입하였으며 data system으로는 HP GG1701AA MSD chemstation을 이용하 였다. 자세한 분석조건은 *Table* 1과 같다.

Table 1. Operating conditions of thermal tube desorber

Parameter	Conditions				
Column	HP-5MS (Cross-linke	d 5% phenylmethylsilicon)30 m×0.2	2 mmI.D.×0.25 μm F.T		
Carrier	He at 0.8 mL/min				
Oven Temp	1.5 °C/mi 40 °C (5 min) →	n 5 °C/min 55 °C(2min) → 160 °C	post run 300 °C (5 min)		
Injector type	split mode	10:1			
Injector Temp	250 ℃				
Transfer line	280 ℃				
Selected Ion	Group	Start time (min)	Selected Ions, m/z		
	1	2.00	78, 96		
	2	3.50	130, 132		
	3	4.50	91, 92		
	4	6.00	164, 166		
	5	8.00	77, 112		
Group	6	9.45	105, 120		
	7	13.00	91, 106		
	8	19.20	150, 152		
	9	21.30	91, 134		
	10	26.00	128		
	11	28.00	196, 198		

2.4. 시료의 추출

시료 200 mL를 매스실린더로 정확히 취하여 250 mL의 분액 깔대기에 넣는다. 실제 물 시료는 여러 가지 요인에 의해 pH가 서로 다른데 이 시료들을 동일한 조건으로 맞춰주기 위해 potassium bishydrogen phosphate를약 8 g 첨가하여 pH를 6.5로 조절하였다. ISTD를 첨가한후 추출용매인 n-pentane 1mL를 넣은후 추출효율을 높이기 위하여 시료에 염화나트륨이 포화될 때까지 약 40 g을 넣고 5분간 진탕시킨다. 이 때, 추출용매로 n-pentane을 사용한 이유는 n-hexane과 비교해 본 결과, n-pentane은 끓는점이 낮은 분석 대상물질과 겹치지 않으며, 첨가물에 의한 방해 피크도 더 적었다. 추출후 무수황산나트륨을 첨가하여수분을 완전히 제거한후 GC-MS로서선택된 이온들을 측정한다.

MS의 상태는 정기적인 tuning을 통해 최적상태를 점 검하며 이때 머무를 시간의 재현성, background, 감도가 최적상태가 되도록 하였다. 시료와 표준물질의 크로마 토그램을 얻은 후 머무름 시간과 질량스펙트럼을 비교 하여 봄으로써 각 화합물들을 확인하였다.

3. 결과 및 고찰

3.1. 크로마토그램

GC/MS (SIM) 크로마토그램은 Fig. 1과 같다. 이는 Milli-Q water 200 mL에 내부표준물질을 1000 ng/L 및 표준물질들을 1000 ng/L로 첨가하여 본 분석법에 따라 얻은 크로마토그램이다. 이들 간의 분리능은 매우 좋았고 추출후에 방해물질의 간섭을 받지 않았으며 감도가 높았다.

3.2. 휘발성 유기물질의 검정곡선, 직선성 및 검출한계

휘발성 및 반휘발성 유기물질의 검정 범위는 물 시료 내에 존재하는 대상 물질들의 농도에 따라 결정하여 Milli-Q water동량 내에 농도별로 첨가하여 검정곡선을 작성하였다. 그 결과 Table 2와 같은 결과를 얻었다.

각각의 유기물질을 검출한계에 가까운 낮은 농도에서 5번 반복 측정값의 signal/noise의 비가 5배 이상이 되고 편차 값이 25% 이내에 들 때를 분석검출한계 (MDL)로 계산하였을 때 Table 2와 같은 결과를 얻었다. 조사된 냄새물질의 검출한계는 0.5-10 ng/L의 분포를 보였다.

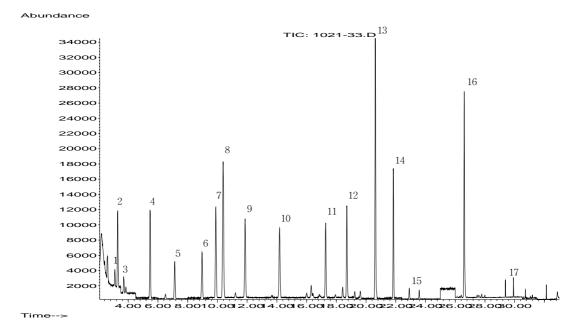


Fig. 1 Chromatogram of the extract from water spiked as the concentration of 100 ng/L of the compounds studied (1:Benzene, 2:Fluorobenzene(ISTD), 3:Trichloroethylene, 4: Toluene, 5:Tetrachloroethylene, 6:Chlorobenzene, 7:Ethylbenzene, 8:m,p-Xylene, 9:o-Xylene, 10:Isopropylbenzene, 11:1,3,5-Trimethylbenzene, 12:1,2,4-Trimethylbenzene, 13:Dichlorobenzene-d4(ISTD), 14:n-Butylbenzene, 15:Dibromochloropropane, 16:Naphthalene, 17:2,4,6-Trichlorophenol).

Vol.17, No.3, 2004

Compounds	Range (µg/L)	Calibration curve	r^2	MDL (ng/L)
Trichloroethylene	0.5~10	y=0.0807x + 0.0066	0.9980	10
Tetrachloroethylene	$0.5 \sim 10$	y=0.1341x + 0.0335	0.9955	5.0
Chlorobenzene	$0.5 \sim 10$	y=0.1693x + 0.0378	0.9973	1.0
Benzene	$0.5 \sim 10$	y=0.1918x + 0.0354	0.9925	5.0
Toluene	$0.5 \sim 10$	y=0.4314x + 0.1674	0.9957	1.0
Ethylbenzene	$0.5 \sim 10$	y=0.5964x + 0.1914	0.9947	1.0
m,p-Xylene	$0.5 \sim 10$	y=0.9293x + 0.3296	0.9939	0.5
o-Xylene	$0.5 \sim 10$	y=0.4819x + 0.1621	0.9941	1.0
n-Butylbenzene	$0.5 \sim 10$	y=0.2936x + 0.0306	0.9975	0.5
Isopropylbenzene	$0.5 \sim 10$	y=0.6628x + 0.2016	0.9938	1.0
1,3,5-Trimethylbenzene	$0.5 \sim 10$	y=0.2720x + 0.0381	0.9964	1.0
1,2,4-Trichlorobenzene	$0.5 \sim 10$	y=0.2720x + 0.0368	0.9964	1.0
Dibromochloropropane	$0.5 \sim 10$	y=0.2819x + 0.0019	0.9986	5.0
Naphthalene	$0.5 \sim 10$	y=0.5137x + 0.1072	0.9982	0.5
2,4,6-Trichlorophenol	$0.5 \sim 10$	y=0.0400x + 0.00017	0.9967	5.0

Table 2. Linear equation, linearity and detection limit of VOCs spiked in water

3.3. 회수율

휘발성 및 반휘발성 유기물질을 200 ng/L의 농도가 되도록 첨가한 조제 시료를 실험방법과 동일하게 추출 하여 얻은 농도와 표준물질과 비교하여 회수율을 구한 결과 모두 75% 이상의 회수율을 보였다.

3.4. 정밀도 및 정확도

제시된 분석법으로 실험한 결과가 얼마나 정밀하고 정확한지를 판단하기 위해 실시하는 과정으로 Milli-Q water에 일정농도 (100 ng/L)가 되도록 표준 혼합물을 첨가하여 실험방법과 동일한 방법으로 5회 추출하였다.

분석된 결과를 검정곡선에 대입하여 얻은 농도 값과 첨가한 농도 값이 얼마나 일치하는지를 확인하여 정확 도를 얻었으며, 5회 분석된 결과를 가지고 상대 표준편 차 (RSD)를 구하여 정밀도를 구하였다. *Table* 3에서 분 석된 결과와 같이 모든 화합물의 정밀·정확도가 5% 내외의 값을 얻었다.

이는 낮은 농도와 휘발성 물질이라는 점을 고려할 때 매우 양호한 결과이며 이와 같이 좋은 값을 보이는 이유는 전처리 과정이 간단하고 농축과정이 없다는 점에 있다.

3.5. 호소 및 각 정수장별 VOCs 측정 결과 및 처리효율

2002년 7월부터 10월까지 D호수를 원수로 사용하는 2개 정수장 (S정수장과 J정수장)과 G하천수를 원

수로 사용하는 1개 정수장 (O정수장)의 원수 및 각 단계별 처리수 중에 휘발성 및 반휘발성 유기물질을 분석하였다. Fig. 2는 정수장 시료 중 대표적인 크로 마토그램이다.

Table 4는 2002년 7월부터 10월초까지 총 8회 채취한 시료의 분석 결과이다. 오염 물질을 정량 분석한 결과 benzene은 0-0-1.4 μg L, toluene은 0-1.9 μg L, xylene은 0-1.3 μg L trichloroethylene은 0.1-1.1 μg L의 농도로 검출되었다. 검출된 benzene, toluene 및 0-xylene은 석유관련 산업, 자동차 등으로부터 오염이 될 수 있는 물질로서 측정된 정도의 미량의 오염은 대기를 통해서도 가능하며 주로 7, 8월중에 원수에서 측정되었다. 현재 먹는 물 기준으로는 benzene은 10 μg L, toluene은 700 μg L, 100

본 조사에서 1,3,5-trimethylbenzene은 최고 1.8 μ g/L (ppb)의 농도까지 측정되었고 1,2,4-trimethylbenzene은 최고 13.0 μ g/L (ppb)의 농도까지 측정되었으며 주로 7,8월중에 원수에서 측정되었다. 이들은 국내 먹는 물 기준으로는 설정되어 있지 않는 화합물들이다. 그러나 이들 화합물들은 처리 수에서는 대부분 검출되지 않았다.

Table 3. Precision and accuracy of VOCs spiked in water

Compounds	Spiked Conc. (ng/L)	Calculated Conc. (ng/L)	Mean±SD (RSD%)
Trichloroethylene	100	88, 99, 99, 94, 95	95±4 (4.6%)
Tetrachloroethylene	100	80, 83, 83, 79, 82	81±2 (2.6%)
Chlorobenzene	100	106, 103, 108, 103, 118	108±6 (5.5%)
Benzene	500	555, 475, 593, 536, 549	542±43 (7.9%)
Toluene	500	422, 495, 474, 473, 409	455±37 (8.1%)
Ethylbenzene	100	105, 111, 119, 116, 118	114±6 (5.2%)
m,p-Xylene	100	105, 118, 117, 117, 120	115±6 (5.2%)
o-Xylene	100	109, 113, 103, 107, 102	107±5 (4.3%)
n-Butylbenzene	100	116, 106, 108, 110, 109	109±5 (4.9%)
Isopropylbenzene	100	114, 110, 115, 111, 120	114±4 (3.5%)
1,3,5-Trimethylbenzene	100	115, 119, 114, 116, 107	114±4 (3.8%)
1,2,4-Trimethylbenzene	100	112, 122, 112, 105, 117	114±6 (5.7%)
Dibromochloropropane	100	88, 82, 80, 83, 85	83±3 (3.9%)
Naphthalene	100	114, 108, 112, 107, 105	109±3 (3.1%)
2,4,6-Trichlorophenol	50	53, 50, 50, 51, 47	50±2 (4.8%)

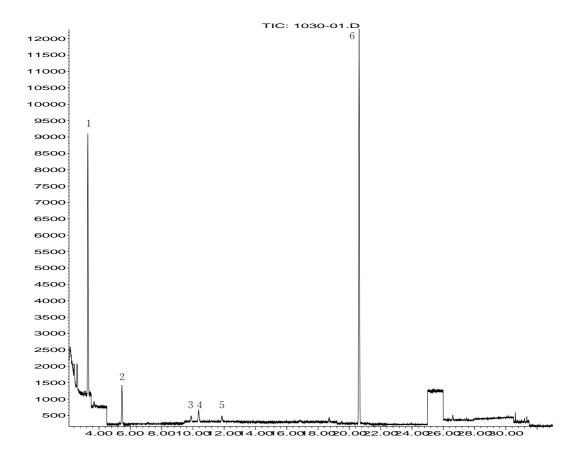


Fig. 2 Chromatogram of compounds detected in a water sample from an Water Treatment Plant (1: fluorobenzene(ISTD), 2: Toluene, 3: Ethylbenzene, 4: m,p-Xylene, 5: o-Xylene, 6: dichlorobenzene-d₄).

Vol.17, No.3, 2004

Chlorobenzene, trichloroethylene, tetrachloroethylene, ethylbenzene, m,p-xylene and n-butylbenzene, dibromo-chloropropane 과 2,4,6-trichlorophenol은 원수 및 처리수에서 모두 검출되지 않았다.

산업폐수로부터 기인된 것으로 추정되는 benzene, toluene 및 xylene은 원수 중에서 극미량 검출되었고 주로 응집·침전 시에 대부분 제거되는 것을 알 수 있었다. 그러나 전염소 처리에서는 이들 측정된 대부분의

화합물이 남아있는 것으로 보아 벤젠화합물들이 염소 에 의해 안정함을 보여주고 있다.

본 조사에서 검출된 1,3,5-trimethylbenzene과 1,2,4-trimethylbenzene는 거의 7, 8월중에 원수에서 측정되었고 이들은 전염소 처리 후 완전히 제거됨을 알 수 있었다. 이는 이들 화합물들이 염소에 의해 분해 되는 것으로 추측할 수 있으며 따라서 전염소 처리 후 대부분 검출되지 않는 것으로 나타났다.

Table 4. Analytical results of volatile- and semivolatile organic compounds in D Lake and treated water

Come	Site	Treatment State	Concentration (µg/L)								
Comp.	Site	Treatment State	7/12	7/26	8/9	8/23	9/6	9/27	9/30	10/7	
	D lake	Raw	ND	ND	ND	ND	ND	ND	-	ND	
		Raw	ND	0.20	ND	0.40	ND	ND	ND	ND	
		After Pre-chlorination	ND	0.10	ND	0.20	ND	ND	ND	ND	
		After Coagulation	-	0.10	ND	ND	ND	ND	ND	ND	
	OWTP	After PAC	ND	ND	ND	ND	ND	ND	ND	ND	
В		After Filtration	ND	ND	ND	ND	ND	ND	ND	ND	
e		After GAC	ND	ND	ND	ND	ND	ND	ND	ND	
n		After Post-chlorination	ND	ND	ND	ND	ND	ND	ND	ND	
z	-	Raw	ND	ND	ND	0.40	ND	ND	-	ND	
e	-	After Pre-chlorination	ND	ND	ND	ND	ND	ND	-	ND	
n	SWTP	After Coagulation	ND	ND	ND	ND	ND	ND	-	ND	
e	-	After Filtration	ND	ND	ND	ND	ND	ND	-	ND	
		After Post-chlorination	ND	ND	ND	ND	ND	ND	-	ND	
	JWTP -	Raw	0.20	ND	ND	ND	ND	ND	ND	ND	
		After Pre-chlorination	0.30	ND	ND	ND	ND	ND	ND	ND	
		After Coagulation	ND	ND	ND	ND	ND	ND	-	ND	
		After Post-Chlorination	ND	ND	ND	ND	ND	ND	-	ND	
	D lake	Treatment State	ND	ND	ND	ND	ND	ND	-	ND	
		Raw	ND	0.30	ND	0.50	ND	ND	ND	ND	
		Raw	ND	0.20	ND	ND	ND	ND	ND	ND	
		After Pre-chlorination	-	0.40	ND	ND	ND	ND	ND	ND	
	OWTP	After Coagulation	ND	ND	ND	ND	ND	ND	ND	ND	
Т		After PAC	ND	ND	ND	ND	ND	ND	ND	ND	
0		After Filtration	ND	ND	ND	ND	ND	ND	ND	ND	
1 -		After GAC	ND	ND	ND	ND	ND	ND	ND	ND	
u	-	After Post-chlorination	ND	1.70	ND	1.00	ND	ND	-	ND	
e	_	Raw	ND	0.70	ND	0.50	ND	ND	-	ND	
n	SWTP	After Pre-chlorination	ND	0.50	ND	0.30	ND	ND	-	ND	
e	-	After Coagulation	ND	ND	ND	ND	ND	ND	-	ND	
·	-	After Filtration	ND	ND	ND	ND	ND	ND	-	ND	
		After Post-chlorination	ND	0.30	ND	1.90	ND	ND	-	ND	
	III/IID	Raw	ND	0.50	ND	ND	ND	ND	-	ND	
	JWTP -	After Pre-chlorination	ND	ND	ND	ND	ND	ND	-	ND	
	-	After Coagulation	ND	ND	ND	ND	ND	ND	-	ND	

^{*} ND : Not detected, - : Not sampled

Table 5. Continued from Table 4

Comp.	Site	Treatment State	Concentration (µg/L)								
comp.	- Site	Treatment State	7/12	7/26	8/9	8/23	9/6	9/27	9/30	10/7	
	D lake	Raw	ND	ND	ND	1.30	0.20	ND	-	ND	
	-	Raw	ND	ND	ND	ND	ND	ND	0.6	ND	
	-	After Pre-chlorination	ND	ND	ND	ND	ND	ND	ND	ND	
	-	After Coagulation	ND	ND	ND	ND	ND	ND	ND	ND	
	O WTP	After PAC	-	-	-	-	-	-	ND	ND	
	-	After Filtration	ND	ND	ND	ND	ND	ND	ND	ND	
X	-	After GAC	ND	ND	ND	ND	ND	ND	ND	ND	
y		After Post-chlorination	ND	ND	ND	ND	ND	ND	ND	ND	
1	-	Raw	ND	ND	ND	ND	ND	ND	-	ND	
e	c -	After Pre-chlorination	ND	ND	ND	ND	ND	ND	-	ND	
n	S WTP	After Coagulation	ND	ND	ND	ND	ND	ND	-	ND	
e	WIF	After Filtration	ND	ND	ND	ND	ND	ND	-	ND	
		After Post-chlorination	ND	ND	ND	ND	ND	ND	-	ND	
	J WTP -	Raw	ND	ND	ND	ND	ND	ND	-	ND	
		After Pre-chlorination	ND	ND	ND	ND	ND	ND	-	ND	
		After Coagulation	ND	ND	ND	ND	ND	ND	-	ND	
		After Post-chlorination	ND	ND	ND	ND	ND	ND	-	ND	
	D lake	Treatment State	ND	ND	ND	ND	0.2	ND	-	ND	
_	_	Raw	ND	ND	ND	ND	ND	ND	ND	ND	
I	_	Raw	ND	ND	ND	ND	ND	ND	ND	ND	
s o	0 -	After Pre-chlorination	-	ND	ND	ND	ND	ND	ND	ND	
р	O TWTP -	After Coagulation	-	-	-	-	-	-	ND	ND	
r	**11	After PAC	ND	ND	ND	ND	ND	ND	ND	ND	
o	-	After Filtration	ND	ND	ND	ND	ND	ND	ND	ND	
p		After GAC	ND	ND	ND	ND	ND	ND	ND	ND	
у	-	After Post-chlorination	ND	ND	ND	ND	ND	ND	-	ND	
l L	0 -	Raw	ND	ND	ND	ND	ND	ND	-	ND	
b e	S -	After Pre-chlorination	ND	ND	ND	ND	ND	ND	-	ND	
n	WTP -	After Coagulation	ND	ND	ND	ND	ND	ND	-	ND	
Z		After Filtration	ND	ND	ND	ND	ND	ND	-	ND	
e		After Post-chlorination	ND	ND	ND	ND	ND	ND	-	ND	
n	J	Raw	ND	ND	ND	ND	ND	ND		ND	
e	WTP	After Pre-chlorination	ND	ND	ND	ND	ND	ND	-	ND	
		After Coagulation	ND	ND	ND	0.20	ND	ND	-	ND	

^{*} ND : Not detected, - : Not sampled

Table 6. Continued from Table 4

		a nom rable 4	Concentration (µg/L)							
Comp.	Site	Treatment State	7/12	7/26	8/9	8/23	9/6	9/27	9/30	10/7
	D lake	Raw	0.5	0.7	1.0	1.8	ND	ND	-	ND
1,3,5		Raw	1.7	0.4	0.9	ND	ND	ND	1.4	ND
	-	After Pre-chlorination	ND	ND	ND	ND	ND	ND	ND	ND
T	_	After Coagulation	ND	ND	ND	ND	ND	ND	ND	ND
r i	O WTP	After PAC	-	-	-	-	-	-	ND	ND
m	_	After Filtration	ND	ND	ND	ND	ND	ND	ND	ND
e	_	After GAC	ND	ND	ND	ND	ND	ND	ND	ND
t		After Pre-chlorination	ND	ND	ND	ND	ND	ND	ND	ND
h y		Raw	ND	0.4	0.3	ND	ND	ND	-	ND
1	G -	After Pre-chlorination	ND	ND	ND	ND	ND	ND	-	ND
b	S - WTP -	After Coagulation	ND	ND	ND	ND	ND	ND	-	ND
e	,,,11	After Filtration	ND	ND	ND	ND	ND	ND	-	ND
n z		After Pre-chlorination	ND	ND	ND	ND	ND	ND	-	ND
e	_	Raw	2.6	0.4	0.4	0.3	ND	ND	-	ND
n	J WTP -	After Pre-chlorination	ND	ND	ND	ND	ND	ND	-	ND
e		After Coagulation	ND	ND	ND	ND	ND	ND	-	ND
		After Post-chlorination	ND	ND	ND	ND	ND	ND	-	ND
	D lake	Treatment State	2.3	2.7	3.7	8.0	13.0	ND	-	ND
1,2,4		Raw	2.2	1.7	3.7	0.1	ND	ND	6.9	ND
ĺ		Raw	ND	ND	ND	ND	ND	ND	ND	ND
T	0 -	After Pre-chlorination	ND	ND	ND	ND	ND	ND	ND	ND
r i	O - WTP -	After Coagulation	-	-	-	-	-	-	ND	ND
m		After PAC	ND	ND	ND	ND	ND	ND	ND	ND
e	_	After Filtration	ND	ND	ND	ND	ND	ND	ND	ND
t		After GAC	ND	ND	ND	ND	ND	ND	ND	ND
h v	_	After Post-chlorination	5.7	1.9	0.9	0.2	ND	ND	-	ND
1	c -	Raw	ND	ND	ND	ND	ND	ND	-	ND
b	S - WTP -	After Pre-chlorination	ND	ND	ND	ND	ND	ND	-	ND
e	_	After Coagulation	ND	ND	ND	ND	ND	ND	-	ND
n z		After Filtration	ND	ND	ND	ND	ND	ND	-	ND
e	_	After Post-chlorination	10.6	1.7	1.6	1.5	ND	ND	-	ND
n	J	Raw	ND	ND	ND	ND	ND	ND	-	ND
e	WTP	After Pre-chlorination	ND	ND	ND	ND	ND	ND	-	ND
	_	After Coagulation	ND	ND	ND	ND	ND	ND	-	ND

^{*} ND : Not detected, - : Not sampled

Table 7. Continued from Table 4

		To the Control of the	Concentration (μg/L)							
Comp.	Site	Treatment State	7/12	7/26	8/9	8/23	9/6	9/27	9/30	10/7
	D lake	Raw	ND	ND	ND	0.6	0.8	ND	-	ND
	_	Raw	ND	ND	ND	ND	ND	ND	0.6	ND
	_	After Pre-chlorination	ND	ND	ND	0.0	ND	1.3	ND	ND
	_	After Coagulation	-	ND	ND	ND	ND	1.7	ND	ND
N	O WTP	After PAC	-	-	-	-	-	-	ND	ND
a	_	After Filtration	ND	ND	ND	ND	ND	ND	ND	ND
p	_	After GAC	ND	ND	ND	ND	ND	ND	ND	ND
h t		After Post-chlorination	ND	ND	ND	ND	ND	ND	ND	ND
ւ h		Raw	ND	ND	ND	ND	ND	ND	-	ND
a	_	After Pre-chlorination	ND	ND	ND	ND	ND	ND	-	ND
1	S - WTP -	After Coagulation	ND	ND	ND	ND	ND	ND	-	ND
e	W 1 F	After Filtration	ND	ND	ND	ND	ND	0.1	-	ND
n e	-	After Post-chlorination	ND	ND	ND	ND	ND	0.1	-	ND
		Raw	ND	ND	ND	0.2	ND	ND	-	ND
	J WTP	After Pre-chlorination	ND	ND	ND	ND	ND	ND	_	ND
		After Coagulation	ND	ND	ND	ND	ND	0.2	_	ND
		After Post-chlorination	ND	ND	ND	ND	ND	ND	_	ND
	D lake	Treatment State	ND	ND	ND	ND	0.1	ND	-	ND
		Raw	ND	ND	ND	ND	ND	ND	1.1	ND
T	-	Raw	ND	ND	ND	ND	ND	ND	ND	ND
r i	-	After Pre-chlorination	-	ND	ND	ND	ND	ND	ND	ND
c	O -	After Coagulation	-	-	-	-	-	-	ND	ND
h	WTP _	After PAC	ND	ND	ND	ND	ND	ND	0.2	ND
0	_	After Filtration	ND	ND	ND	ND	ND	ND	ND	ND
r	_	After GAC	ND	ND	ND	ND	ND	ND	ND	ND
o		After Post-chlorination	ND	ND	ND	0.1	ND	ND	-	ND
e	_	Raw	ND	ND	ND	ND	ND	ND	-	ND
t h	S - WTP -	After Pre-chlorination	ND	ND	ND	ND	ND	ND	-	ND
y	W 1 F	After Coagulation	ND	ND	ND	ND	ND	ND	-	ND
1		After Filtration	ND	ND	ND	ND	ND	ND	-	ND
e		After Post-chlorination	ND	ND	ND	0.3	ND	ND	-	ND
n e	J	Raw	ND	ND	ND	ND	ND	ND	-	ND
-	WTP	After Pre-chlorination	ND	ND	ND	ND	ND	ND	-	ND
	-	After Coagulation	ND	ND	ND	ND	ND	ND	-	ND

^{*} ND : Not detected, - : Not sampled

4. 결 론

본 연구에서는 물 시료 중의 15종의 오염물질을 동시에 분석 가능한 고감도 분석법이 개발되었다. 이 분석법은 물 시료 200 mL를 n-pentane 1 mL를 사용하여추출용매의 농축 없이 분석 가능한 1단계 추출법으로서 농축에 의한 휘발성 유기화합물의 손실을 보완할수 있었으며, 재현성 또한 높일 수 있었다. 따라서 본분석법은 1단계 추출에 의해 추출하고 GC-MS (SIM)을이용하여 측정하는 매우 간단한 방법으로써, 분석 대상물질이 모두 0.993이상의 좋은 직선성을 나타내었으며, 재현성은 5% 내외의 값을 보였다. 검출한계는 0.5~10 mg/L(ppt) 까지 낮아 고가의 장치를 필요로 하는 CLSA나 SPME 등보다도 오히려 낮은 검출한계를 나타내고 있어 매우 간단하면서도 동시에 고감도로 분석할 수있는 방법이라고 할 수 있겠다.

이 방법은 시료 1개당 약 35분이 소요되므로 하루 24시간 동안에 약 40개의 시료를 처리할 수 있어 기존에 발표된 분석법들 보다 turnaround time이 짧아, 하루에 많은 시료 처리가 필요로 하는 현장에서 사용하기에 적합할 것이다.

이와 같은 장점을 나타낼 수 있는 이유는 보통의 용매 추출법은 다량의 용매로 추출한 후 용매의 농축과정이 있지만, 본 분석법에는 이 과정이 없다는 것이다. 농축과정은 질소나 증발 건조기를 사용하여 용매를 건조시키는 과정을 말하며 이 과정에서 분석물질의 재현성이 낮아지게 된다. 그러나 본 분석법은 시료 200 mL를 n-pentane 1 mL로 추출함과 동시에 자연 농축하는 방법을 사용하고 있어 분석물질의 재현성이 좋았다. 또한, 유독한 용매를 적은 양을 사용하므로, 환경적으로도 안전한 방법이라고 할 수 있겠다.

본 연구에서는 개발된 방법을 사용하여 하천수, 호소수 및 그 원수를 이용하는 3개의 정수장의 처리 공정별로 15종의 유기물질을 측정한 결과 매우 의미 있는 결과가 나왔다. 이는 현재의 먹는 물 기준과 비교해볼 때, 검출된 농도는 극미량에 불과하지만 정수장에서 처리효율을 보기위해서는 낮은 농도까지 분석하여야하므로 측정된 값들은 매우 가치 있는 자료로 판단된다. 따라서 개발된 본 분석법은 앞으로 물 시료중의 VOCs를 고감도로 동시에 간단하게 분석하는데 적용될 수있을 것으로 사료된다.

감사의 글

본 연구는 2002년도 대전·충남 대전지역환경기술개 발센터의 지원을 받아 수행하였음을 밝힙니다.

참고 문헌

- Johnston, R., H. Mar. Biol. Ass. U.K. 44, 87-109, 1964.
- 2. Susan B., Water Sci. Tech., 40(6), 251-256, 1999.
- Krasner, S. W.; Hwang, C. J.; M. J. McGuire, Wat. Sci. Tech., 15, 127, 1983.
- Bruchet, A.; Hochereau, C.; Analusis, 25, M32, 1997.
- Palmentier, J-PF. P.; Taguchi, V. Y.; Jenkins, S. W. D.; Wang, D. T.; Ngo, K-P.; Robinson, D., Water Res., 32, 287, 1998.
- 6. Graham, D.; Hayes, K., Water, 25, 24, 1998.
- 7. Korth, W.; Bowmer, K.; Ellis, J., Water Res., 25, 319, 1991.
- 8. George, J. E.; Payne, G.; Conn, D.; Ward, G., Thoma, J. J., *Proc. Water Qual. Technol. Conf.*, *P3C/1-P3C/11*, 1997.
- Marshili, R. T.; Miller, N.; Kilmer, G. J.; Simmons,
 R. E.; J. Chromatogr. Sci., 32, 165, 1994.
- 10. Takeda, T., Shimadzu Hyoron, 49, 79, 1992.
- Watson, S. B.; Brownlee, B.; Satchwill, T.; Hargesheimer, E. E., Water Res., 34, 2818, 2000.
- Uchiyama, Y.; Ueda, Y.; Itoh, Y.; Tsuzuki, T., Hokkaidoritsu Eisei Kenkyushoho, 47, 8, 1997.
- Johnsen, P. B.; Kuan, J. W., J Chromatogr, 409, 337-34, 1987.
- Brownlee, B. G.; Gammie, L.; Gummer, W. D.;
 MacInnis, G. A., Wat Sci Tech, 20(8), 91-97, 1988.