• Title/Summary/Keyword: 화학반응 메커니즘

Search Result 191, Processing Time 0.027 seconds

A Kinetic Study on the Nucleophilic Substitution Reaction of 2,4-dinitrophenyl 5-substituted-2-furoates Under R2NH/R2NH2+ in 20 mol% DMSO(aq). Effects of Nonleaving Group and Leaving Group on the Reaction Mechanism (R2NH/R2NH2+-20 mol% DMSO(aq)의 조건에서 2,4-dinitrophenyl 5-substituted-2-furoates의 아실 이동반응에 대한 반응속도론적 연구. 반응 메커니즘에 미치는 비이탈기와 이탈기의 효과)

  • Sang Yong Pyun;Kyu Cheol Paik;Man So Han;Bong Rae Cho
    • Journal of the Korean Chemical Society
    • /
    • v.67 no.3
    • /
    • pp.191-198
    • /
    • 2023
  • Acyl transfer reactions of 2,4-dinitrophenyl-5-substituted-2-furoates (1a-d) promoted by R2NH/R2NH2+ in 20mol% DMSO(aq) have been studied kinetically. The reactions are second-order and exhibit downward curves of the Brönsted plots with pKa0 = 9.5, β1 = 0.23-0.35 and β2 = 0.88-0.99. The k1 values increased with a stronger nucleophile and as the electron-withdrawing ability of the 5-furyl substituent increases. In contrast, the k2/k-1 values were nearly idential regardless of the 5-furyl substituents. From these results, a stepwise mechanism with a change in the rate-determining step(RDS) is proposed.

Theoretical Understanding of Fenton Chemistry (펜톤 화학 반응의 이론적 이해)

  • Lim, Haegyu;Namkung, Kyu Cheol;Yoon, Jeyong
    • Applied Chemistry for Engineering
    • /
    • v.16 no.1
    • /
    • pp.9-14
    • /
    • 2005
  • The Fenton reaction ($Fe^{2+}+H_2O_2$) has attracted considerable attention because of promising applicability as an environmental technology. While the various novel environmental technologies using Fenton reaction have been actively developed, the detailed mechanism of Fenton reaction is not clearly defined yet. As the major oxidizing chemical species, hydroxyl radical and high valent iron complex have been suggested to be produced in Fenton reaction in different mechamisms respectively. We critically summarized the basic issues regarding the microscopic mechanism of Fenton reaction.

Prediction of Pollutant Emissions from Lean Premixed Gas Turbine Combustor Using Chemical Reactor Network (화학반응기 네트워크을 이용한 희박 예혼합 가스터빈 연소기에서의 오염물질 예측에 관한 연구)

  • Park, Jung-Kyu;Nguyen, Truc Huu;Lee, Min-Chul;Chung, Jae-Wha
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.2
    • /
    • pp.225-232
    • /
    • 2012
  • A chemical reactor network (CRN) was developed for a lean premixed gas turbine combustor to predict the emission of pollutants such as NOx and CO. In this study, the predictions of NOx and CO emissions from lean premixed methane-air combustion in the gas turbine were carried out using CHEMKIN and a GRI 3.0 methane-air combustion mechanism, which includes the four NO formation mechanisms for various load conditions. The calculated results were compared with experimental data obtained from a modified test combustor to validate the model. The contributions of the four NO pathways were investigated for various load conditions. The effects of nonuniformity of the mass flux and of the equivalence ratio of the injector on the NOx formation were investigated, and a method of reducing the pollutant formation was suggested for the development of a sub-10 ppm gas turbine combustor.

Hydrodynamic and Oxygen Effects on Corrosion of Cobalt in Borate Buffer Solution (Borate 완충용액에서 코발트의 부식에 대한 대류와 산소의 영향)

  • Kim, Younkyoo
    • Journal of the Korean Chemical Society
    • /
    • v.58 no.5
    • /
    • pp.437-444
    • /
    • 2014
  • The electrochemical corrosion and passivation of Co-RDE in borate buffer solution was studied by Potentiodynamic and electrochemical impedance spectroscopy. The mechanisms of both the active dissolution and passivation of cobalt and the hydrogen evolution in reduction reaction were hypothetically established while utilizing the Tafel slope, the rotation speed of Co-RDE, impedance data and the pH dependence of corrosion potential. Based on the EIS data, an equivalent circuit was suggested. In addition, the electrochemical parameters for specific anodic dissolution regions were carefully measured. An induction loop in Nyquist plot measured at the open-circuit potential was observed in the low frequency, and this could be attributed to the adsorption-desorption behavior in the corrosion process.

A Density-Functional Theory Study on Mechanisms of the Electrochemical Nitrogen Reduction Reaction on the Nickel(100) Surface (범밀도함수이론에 기초한 니켈(100) 표면에서의 전기화학적 질소환원반응 메커니즘에 관한 연구)

  • Minji Kim;Sangheon Lee
    • Korean Chemical Engineering Research
    • /
    • v.61 no.4
    • /
    • pp.604-610
    • /
    • 2023
  • The nitrogen reduction reaction (NRR), which produces NH3 by reducing N2 under ambient conditions, is attracting attention as a promising technology that can reduce energy consumption in industrial processes. We investigated the adsorption behaviors at various active sites on the Ni (100) surface, which is widely used among catalytic metal surfaces capable of adsorbing and activating N2, based on density-functional theory calculations. We also investigated two N2 adsorption structures, so-called end-on and side-on structures. We find that for the end-on case, N2 is adsorbed on a top site, and the reaction proceeded in a distal pathway, while for the side-on case, N2 is adsorbed on a bridge site, and the reaction proceeded with enzymatic pathway. Finally, this study provides insight into the adsorption of metal catalyst surfaces for the NRR reactions based on the calculated Gibbs free energy profiles of the thermodynamically most favorable pathways.

Surface Modification of Single and Few-Layer MoS2 by Oxygen Plasma

  • Go, Taek-Yeong;Jeong, A-Reum;Park, Gwang-Hui;Na, Yun-Hui;Ryu, Sun-Min
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.159.2-159.2
    • /
    • 2014
  • 간접띠간격(indirect bandgap)을 갖는 층상형 반도체 $MoS_2$는 두께가 줄어들어 단일층이 되면 층간 상호작용의 변화로 인해 ~1.8 eV의 직접띠간격(direct bandgap)을 갖게 된다. 이러한 초박형 $MoS_2$의 발광 특성을 활용하기 위해서는 원자 크기 수준에서 두께와 물성을 조절할 수 있는 화학적 표면개질법에 대한 이해가 필요하다. 최근 아르곤(Ar) 플라즈마를 이용한 $MoS_2$의 층상(layer-by-layer) 식각과 표면제어에 관한 연구결과가 보고되었으나 자세한 반응 메커니즘은 알려져 있지 않다. 본 연구에서는 산소 플라즈마에 의한 단일층 및 복층 $MoS_2$의 산화반응을 원자힘 현미경(AFM), 광전자 분광법(XPS), 라만 및 광발광 분광법을 통해 관찰하고 반응 메커니즘을 이해하고자 한다. 플라즈마로 생성된 산소라디칼과의 반응시간이 증가함에 따라 $E{^1}_{2g}$$A_{1g}$-진동모드에서 기인하는 라만 신호, 그리고 A와 B-엑시톤에서 유래하는 광발광의 세기가 감소함을 확인하였다. XPS와 AFM을 통해 반응이 진행됨에 따라 $MoS_2$의 상층이 $MoO_3$로 산화되면서 나노입자로 응집되어 표면형태가 변화하는 것을 확인하였다. 이 결과는 플라즈마 산화반응을 이용하여 $MoS_2$ 표면에 구조적 결함(defect)과 층상 식각을 유발하고 광발광 특성 제어를 위해 전자구조를 조절할 수 있다는 가능성을 보여준다.

  • PDF

Mechanism of Biological Nitrogen Fixation in Azotobacter vinelandii (Azotobacter vinelandii에서의 생물학적 질소고정 작용 메카니즘)

  • Kim, Yong-Ung;Han, Jae-Hong
    • Applied Biological Chemistry
    • /
    • v.48 no.3
    • /
    • pp.189-200
    • /
    • 2005
  • Biological nitrogen fixation is an important process for academic and industrial aspects. This review will briefly compare industrial and biological nitrogen fixation and cover the characteristics of biological nitrogen fixation studied in Azotobacter vinelandii. Various organisms can carry out biological nitrogen fixation and recently the researches on the reaction mechanism were concentrated on the free-living microorganism, A. vinelandii. Nitrogen fixation, which transforms atmospheric $N_2$ into ammonia, is chemically a reduction reaction requiring electron donation. Nitrogenase, the biological nitrgen fixer, accepts electrons from biological electron donors, and transfers them to the active site, FeMo-cofactor, through $Fe_4S_4$ cluster in Fe protein and P-cluster in MoFe protein. The electron transport and the proton transport are very important processes in the nitrogenase catalysis to understand its reaction mechanism, and the interactions between FeMo-cofactor and nitrogen molecule are at the center of biological nitrogen fixation mechanism. Spectroscopic studies including protein X-ray crystallography, EPR and $M{\ddot{o}}ssbauer$, biochemical approaches including substrate and inhibitor interactions as well as site-directed mutation study, and chemical approach to synthesize the FeMo-cofactor model compounds were used for biological nitrogen fixation study. Recent research results from these area were presented, and finally, a new nitrogenase reaction mechanism will be proposed based on the various research results.

Review of Microbially Mediated Smectite-illite Reaction (생지화학적 스멕타이트-일라이트 반응에 관한 고찰)

  • Kim, Jin-Wook
    • Economic and Environmental Geology
    • /
    • v.42 no.5
    • /
    • pp.395-401
    • /
    • 2009
  • The smectite-illite (SI) reaction is a ubiquitous process in siliciclastic sedimentary environments. For the last 4 decades the importance of smectite to illite (S-I) reaction was described in research papers and reports, as the degree of the (S-I) reaction, termed "smectite illitization", is linked to the exploration of hydrocarbons, and geochemical/petrophysical indicators. The S-I transformation has been thought that the reaction, explained either by layer-by-layer mechanism in the solid state or dissolution/reprecipitation process, was entirely abiotic and to require burial, heat, and time to proceed, however few studies have taken into account the bacterial activity. Recent laboratory studies showed evidence suggesting that the structural ferric iron (Fe(III)) in clay minerals can be reduced by microbial activity and the role of microorganisms is to link organic matter oxidation to metal reduction, resulting in the S-I transformation. In abiotic systems, elevated temperatures are typically used in laboratory experiments to accelerate the smectite to illite reaction in order to compensate for a long geological time in nature. However, in biotic systems, bacteria may catalyze the reaction and elevated temperature or prolonged time may not be necessary. Despite the important role of microbe in S-I reaction, factors that control the reaction mechanism are not clearly addressed yet. This paper, therefore, overviews the current status of microbially mediated smectite-to-illite reaction studies and characterization techniques.

Chemical Mechanism Reduction and Validation of Methyl Butanoate by Automatic Reduction Procedure (Methyl Butanoate의 상세 화학 반응 메커니즘 자동 축소화를 통한 기초 반응 메커니즘의 생성 및 검증)

  • Lee, Youngjae;Huh, Kang Y.
    • Journal of the Korean Society of Combustion
    • /
    • v.21 no.3
    • /
    • pp.16-23
    • /
    • 2016
  • In this study, skeletal mechanisms are produced by directed relation graph with specified threshold value and sensitivity analysis based on species database from the directed relation graph. Skeletal mechanism is optimized through the elimination of unimportant reaction steps by computational singular perturbation importance index. Reduction is performed for the detailed mechanism of methyl butanoate consisting of 264 species and 1219 elementary reactions. Validation shows acceptable agreement for auto-ignition delays in wide parametric ranges of pressure, temperature and equivalence ratio. Methyl butanoate has been proposed as a simple biodiesel surrogate although the alkyl chain consists of four carbon atoms. The resulting surrogate mechanism for n-heptane and MB consists of 76 species and 226 reaction steps including those for NOx.

Spectrophotometric Investigation of Oxidation of Cefpodoxime Proxetil by Permanganate in Alkaline Medium: A Kinetic Study (알칼리성 용매에서 과망간에 의한 세프포독심 프록세틸의 산화의 분광광도법적 조사: 속도론적 연구)

  • Khan, Aftab Aslam Parwaz;Mohd, Ayaz;Bano, Shaista;Siddiqi, K. S.
    • Journal of the Korean Chemical Society
    • /
    • v.53 no.6
    • /
    • pp.709-716
    • /
    • 2009
  • A Kinetics pathway of oxidation of Cefpodoxime Proxetil by permanganate in alkaline medium at a constant ionic strength has been studied spectrophotometrically. The reaction showed first order kinetics in permanganate ion concentration and an order less than unity in cefpodoxime acid and alkali concentrations. Increasing ionic strength of the medium increase the rate. The oxidation reaction proceeds via an alkali-permanganate species which forms a complex with cefpodoxime acid. The latter decomposes slowly, followed by a fast reaction between a free radical of cefpodoxime acid and another molecule of permanganate to give the products. Investigations of the reaction at different temperatures allowed the determination of activation parameters with respect to the slow step of proposed mechanism and fallows first order kinetics. The proposed mechanism and the derived rate laws are consistent with the observed kinetics.