References
- T. Turanyi, Reduction of large reaction mechanisms, New J. Chem., 14 (1990) 795-803.
- A.S. Tomlin, M.J. Pilling, T. Turanyi, J.H. Merkin and J. Brindley, Mecahanism reduction for the oscillatory oxidation of hydrogen: Sensitivity and quasi-steady-sate analyses, Combust. Flame, 91 (1992) 107-130. https://doi.org/10.1016/0010-2180(92)90094-6
- H. Wang and M. Frenklach, Detailed reduction of reaction mechanisms for flame modeling, Combust. Flame, 87 (1991) 365-370. https://doi.org/10.1016/0010-2180(91)90120-Z
- T.F. Lu, Y. Ju and C.K. Law, A directed relation graph method for mechanism reduction, Proc. Combust. Inst., 30 (2005) 1333-1341. https://doi.org/10.1016/j.proci.2004.08.145
- T.F. Lu, Y. Ju and C.K. Law, Linear time reduction of large kinetic mechanism with directed realtion graph: n-Heptane and iso-octane, Combust. Flame, 144 (2006) 24-36. https://doi.org/10.1016/j.combustflame.2005.02.015
- T.F. Lu, Y. Ju and C.K. Law, Strategies for mechanism reduction for large hydrocarbons: n-heptane, Combust. Flame, 154 (2008) 153-163. https://doi.org/10.1016/j.combustflame.2007.11.013
- N. Peters, Numerical Simulation of Combustion Phenomena, Lecture Notes in Physics. Springer, Berlin, 241 (1985) 90-109.
- N. Peters and R.J. Kee, The computation of stretched laminar methane-air diffusion flames using a reduced four-step mechanism, Combust. Flame, 68 (1987) 17-29. https://doi.org/10.1016/0010-2180(87)90062-9
- J.Y. Chen, A general procedure for constructing reduced reaction mechanisms with given independent relations, Combust. Sci. Technol., 57 (1988) 89-94. https://doi.org/10.1080/00102208808923945
- M.D. Smooke, Reduced kinetic mechanisms and asymptotic approximations for methan-air flames, Lecture Notes in Physics, Springer-Verlag, Berlin, 384 (1991) 1-28.
- A. Massias, D. Diamantis, E. Mastorakos and D. A. Goussis, An algorithm for the construction of global reduced mechanisms with CSP data, Combust. Flame, 117 (1999) 685-708. https://doi.org/10.1016/S0010-2180(98)00132-1
- A. Massias, D. Diamantis, E. Mastorakos and D. A. Goussis, Global reduced mechanisms for methane and hydrogen combustion with nitric oxide formation constructed with CSP data, Combust. Theory Modelling, 3 (1999) 233-257. https://doi.org/10.1088/1364-7830/3/2/002
- T.F. Lu, Y. Ju and C.K. Law, Complex CSP for chemistry reduction and analysis, Combust. Flame, 126 (2001) 1445-1455. https://doi.org/10.1016/S0010-2180(01)00252-8
- U. Maas and S.B. Pope, Simplifying chemical kinetics: Intrinsic low-dimensional manifolds in composition space, Combust. Flame, 88 (1992) 239-264. https://doi.org/10.1016/0010-2180(92)90034-M
- E. M. Fisher W. J. Pitz, H. J Curran and C. K. Westbrook, Detailed chemical kinetic mechanisms for combustion of oxygenated fuels, Prog. Energy Combust. Sci., 28 (2000), 1579-1586.
- K. E. Niemeyer, Skeletal mechanism generation for surrogate fuels, Master Thesis, Case western Reserve University, 2010.
- R. J. Kee, F. M. Rupley and J. A. Miller, "Chemkin-II: A FORTRAN chemical Kinetics Package for the Analysis of Gas-Phase Chemical Kinetics," SAND89-8009, 1989.
- W. J. Pitz and C. J. Muller, Recent Progress in the development of diesel surrogate fuels, Prog. Energy Combust. Sci., 37 (2011), 330-350. https://doi.org/10.1016/j.pecs.2010.06.004
- J. L. Brakora, Y. Ra, R. D. Reitz, J. Mcfarlane and C. S. Daw, Development and validation of a reduced reaction mechanism for biodiesel-fueled engine simulation. SAE paper 2008-01-1378, 2008.
- B. AKih-Kumgeh and J. M. Bergthorson, Comparative study of methyl butanoate and n-heptane high temperature autoignition. Energy Fuels.24(4) (2010), 2439-48. https://doi.org/10.1021/ef901489k