References
- B. Franzelli, E. Riber, L. Gicquel and T. Poinsot, Large Eddy Simulation of Combustion Instabilities in a Lean Partially Premixed Swirled Flame, Combustion and Flame, 159(2) (2012) 621-637. https://doi.org/10.1016/j.combustflame.2011.08.004
- B. Wegner, A. Maltsev, C. Schneider, A. Sadiki, A. Dreizler and J. Janicka, Assessment of unsteady RANS in prediction swirl flow instability based on LES and experiments, International Journal of Heat and Fluid Flow, 25(3) (2004) 528-536. https://doi.org/10.1016/j.ijheatfluidflow.2004.02.019
- M. Boger, D. Veynante, H. Boughanem, A. Trouve, Direct Numerical Simulation Analysis of Flame Surface Density Concept for Eddy Simulation of Turbulent Premixed Combustion, The 27th Symposium (International) on Combustion, 1998, 917-925.
- K. Kim and D. Santavicca, Linear Stability Analysis of Acoustically Driven Pressure Oscillations in a Lean Premixed Gas Turbine Combustor, Journal of Mechanical Science and Technology 23(12) (2009) 3436-3447. https://doi.org/10.1007/s12206-009-0924-0
- D. Kim, Linear stability analysis in a gas turbine combustor using thermoacoustic models, J. Korean Soc. Combust., 17(2) (2012) 17-23.
- D. Kim, S. Kim and K. Kim, Thermoacoustic analysis considering flame location in a gas turbine combustor, J. Korean Soc. Combust., 18(1) (2013) 1-6.
- J. Kim and D. Kim, Combustion instability prediction using 1D thermoacoustic model in a gas turbine combustor, Journal of ILASS-Korea, 20(4) (2015) 241-246. https://doi.org/10.15435/JILASSKR.2015.20.4.241
- F. Golnaraghi and B. Kuo, Automatic Control Systems, Wiley-Interscience Publication, Hoboken, 2009, 476-510
- J. Kopitz, W. Polifke, CFD-Based Application of the Nyquist Criterion to Thermo-Acoustic Instability, Journal of Computational Physics, 227(14) (2008) 6754-6678. https://doi.org/10.1016/j.jcp.2008.03.022
- T. Lieuwen and V. Yang, Combustion Instabilities in Gas Turbine Engines, AIAA, 210 (2005).
- T. Schuller. D. Durox and S. Candel, A Unified Model for the Prediction of Laminar Flame Transfer Functions: Comparisons Between Conical and V-Flame Dynamics, Combustion and Flame, 134 (1-2) (2003) 21-34. https://doi.org/10.1016/S0010-2180(03)00042-7
- S. Preetham and T. Lieuwen, Response of Turbulent Premixed Flames to Harmonic Acoustic Forcing, Proceedings of the Combustion Institute, 31(1) (2007) 1427-1434. https://doi.org/10.1016/j.proci.2006.07.198
- R. Balachandran, B. Ayoola, C. Kaminski, A. Dowling and E. Mastorakos, Experimental Investigation of the Nonlinear Response of Turbulent Premixed Flames to Imposed Inlet Velocity Oscillations, Combustion and Flame, 134(1-2) (2003) 37-55.
- J. Kim, J. Kim, J. Lee and D. Kim, Effects of fuel composition on flame transfer function in lean premixed combustor, Journal of ILASS-Korea, 20 (3) (2015) 135-140. https://doi.org/10.15435/JILASSKR.2015.20.3.135
- M. Yoon, J. Kim and D. Kim, A flame transfer function with nonlinear phase, Journal of the Korean Society of Propulsion Engineers, 20(3) (2016) 78-86. https://doi.org/10.6108/KSPE.2016.20.3.078
- K. Kim, J. Lee, D. Quay and D. Santavicca, Spatially Distributed Flame Transfer Functions for Predicting Combustion Dynamics in Lean Premixed Gas Turbine Combustor, Combustion and Flame, 157(9) (2010) 1718-1730. https://doi.org/10.1016/j.combustflame.2010.04.016
Cited by
- Acoustic Field Analysis of a Combustor-nozzle System with a Premixing Chamber vol.21, pp.5, 2017, https://doi.org/10.6108/KSPE.2017.21.5.046
- 외부 교란에 대한 Burke-Schumann 화염에서 형상과 열방출량을 통한 응답 특성 파악 vol.22, pp.1, 2016, https://doi.org/10.15231/jksc.2017.22.1.032
- 1D Lumped Method를 이용한 모형 부분 예혼합 가스터빈 연소기의 연소불안정 해석 vol.22, pp.1, 2016, https://doi.org/10.15231/jksc.2017.22.1.039
- 화염 전달함수 및 DMD 기법을 이용한 모형 가스터빈의 연소불안정성 평가 vol.22, pp.2, 2016, https://doi.org/10.15231/jksc.2017.22.2.001
- 환형 가스터빈 연소기에서 네트워크 모델을 이용한 연소불안정 해석 vol.22, pp.3, 2016, https://doi.org/10.6108/kspe.2018.22.3.072
- Analytical Equations for Thermoacoustic Instability Sources and Acoustic Radiation from Reacting Turbulence vol.2020, pp.None, 2016, https://doi.org/10.1155/2020/8890360
- Acoustic Modeling in a Gas Turbine Combustor with Backflow Using a Network Aproach vol.25, pp.5, 2016, https://doi.org/10.6108/kspe.2021.25.5.018
- Prediction of combustion instability by combining transfer functions in a model rocket combustor vol.119, pp.None, 2021, https://doi.org/10.1016/j.ast.2021.107202