Mechanism of Biological Nitrogen Fixation in Azotobacter vinelandii

Azotobacter vinelandii에서의 생물학적 질소고정 작용 메카니즘

  • Kim, Yong-Ung (Metalloenzyme Research Group, BET Research Institute and Department of Biotechnology, Chung-Ang University) ;
  • Han, Jae-Hong (Metalloenzyme Research Group, BET Research Institute and Department of Biotechnology, Chung-Ang University)
  • 김용웅 (중앙대학교 생명공학과, 금속효소 연구그룹, 생명환경 연구원) ;
  • 한재홍 (중앙대학교 생명공학과, 금속효소 연구그룹, 생명환경 연구원)
  • Published : 2005.09.30

Abstract

Biological nitrogen fixation is an important process for academic and industrial aspects. This review will briefly compare industrial and biological nitrogen fixation and cover the characteristics of biological nitrogen fixation studied in Azotobacter vinelandii. Various organisms can carry out biological nitrogen fixation and recently the researches on the reaction mechanism were concentrated on the free-living microorganism, A. vinelandii. Nitrogen fixation, which transforms atmospheric $N_2$ into ammonia, is chemically a reduction reaction requiring electron donation. Nitrogenase, the biological nitrgen fixer, accepts electrons from biological electron donors, and transfers them to the active site, FeMo-cofactor, through $Fe_4S_4$ cluster in Fe protein and P-cluster in MoFe protein. The electron transport and the proton transport are very important processes in the nitrogenase catalysis to understand its reaction mechanism, and the interactions between FeMo-cofactor and nitrogen molecule are at the center of biological nitrogen fixation mechanism. Spectroscopic studies including protein X-ray crystallography, EPR and $M{\ddot{o}}ssbauer$, biochemical approaches including substrate and inhibitor interactions as well as site-directed mutation study, and chemical approach to synthesize the FeMo-cofactor model compounds were used for biological nitrogen fixation study. Recent research results from these area were presented, and finally, a new nitrogenase reaction mechanism will be proposed based on the various research results.

생물학적 질소고정과정의 연구는 학문적으로나 산업적으로 매우 중요한 과정이다. 본 총설에서는 공업적 질소고정과 비교되는 생물학적 질소고정의 특징을 간단히 살펴보고, Azotobacter vinelandii에서 연구되고 있는 생물학적 질소고정효소의 특징을 다룬다. 생물학적 질소고정과정은 다양한 생명체에서 일어나며, 최근에는 미생물인 A. vinelandii에 그 작용 메커니즘에 관한 연구가 집중되어 있다. 공기중의 질소를 암모니아로 변환시키는 질소고정은 화학적으로 환원 반응에 해당하므로 전자의 공급이 필요하다. 생물학적 질소고정을 담당하는 질소고정효소는 촉매반응을 위해 생물학적인 환원력을 사용하여 전자를 공급받아, Fe 단백질의 $Fe_4S_4$ cluster와 MoFe 단백질의 P-cluster를 거쳐 질소 환원 반응이 일어나는 FeMo-cofactor로 전달한다. 이러한 전자전달의 과정과 수소이온의 전달 과정은 질소고정효소의 반응 메커니즘 이해에 매우 중요한 과정이며, FeMo-cofactor와 질소분자의 상호작용은 생물학적 질소고정 메커니즘의 중심에 있다. 질소고정 작용 메커니즘의 연구에는 X-선 단백질 결정학, EPR과 $M{\ddot{u}}ssbauer$ 등의 다양한 분광학적 방법과, 효소의 기질과 저해제의 상호작용을 연구하고 mutant와 비교하는 생화학적 접근방법, 그리고 FeMo-cofactor의 모델 화합물을 합성하여 연구하는 화학적 방법 등이 적용되었다. 이들 분야의 최근 연구결과를 소개하며, 마지막으로, 다양한 연구 결과에 바탕하여 새로운 질소고정효소의 작용 기작이 제안하였다.

Keywords

References

  1. Smil, V. (2000) In Enriching the earth: Fritz Haber, Carl Bosch, and the transformation of world food production (1st ed.) MIT Press, Cambridge, MA
  2. Jennings, J. R. (1991) In Catalytic Ammonia Synthesis, Plenum press, New York
  3. Etrl, G. (1980) Surface science and catalysis-studies on the mechanism of ammonia synthesis. Catal. Rev.-Sci. Eng. 21, 201
  4. Boudart, M. (1980) Kinetics and mechanism of ammonia synthesis. Catal. Rev. 23, 1
  5. Rees, D. C. and Howard J. B. (2000) Nitrogenase: standing at the crossroads. Curr. Opin. Chem. Biol. 4, 559-566 https://doi.org/10.1016/S1367-5931(00)00132-0
  6. Pedrosa, F. O., Hungria, M., Yates, G. and Newton, W. E. (1999) Nitrogen Fixation: From molecules to Crop Productivity. In Current Plant Science and Biotechnology in Agriculture, vol. 38, Kluwer Academic Publ. London
  7. Sellman, D., Utz, J., Blum, N. and Heinemann, F. W. (1999) On the function of nitrogenase FeMo cofactors and competitive catalysts: chemical priniciples, structural blue-prints, and the relevance of iron sulfur complexes for $N_{2}$ fixation. Coord. Chem. Rev. 190-192, 607-627
  8. Smith, B. E. (1999) Structure, function, and biosynthesis of the metallosulfur clusters in nitrogenases. Adv. Inorg. Chem. 47, 159 https://doi.org/10.1016/S0898-8838(08)60078-1
  9. Sharp, R. E. and Chapman, S. K. (1999) Mechanisms for regulating electron transfer in multi-centre redox proteins. Biochim. Biophys. Acta. 1432, 143-158
  10. Dance, I. (1998) Understanding structure and reactivity of new fundamental inorganic molecules: metal sulfides, metallocarbohedrenes, and nitrogenase. Chem. Comm. 523-530
  11. Tuczek, F. and Lehnert, N. (1998) New developments in nitrogen fixation. Angew. Chem. Int. Ed. 37, 2636-2638 https://doi.org/10.1002/(SICI)1521-3773(19981016)37:19<2636::AID-ANIE2636>3.0.CO;2-Q
  12. Kisker, C., Schindelin, H. and Rees, D. C. (1997) Molybdenum-cofactor-containing enzymes: structure and mechanism. Ann. Rev. Biochem. 66, 233-267 https://doi.org/10.1146/annurev.biochem.66.1.233
  13. Thorneley, R. N. F. and Lowe, D. J. (1996) Nitrogenase: substrate binding and activation. J. Biol. Inorg. Chem. 1, 576- 580 https://doi.org/10.1007/s007750050095
  14. Dance, I. (1996) Theoretical investigations of the mechanism of biological nitrogen fixation at the FeMo cluster site. J. Biol. Inorg. Chem. 1, 581-586 https://doi.org/10.1007/s007750050096
  15. Coucouvanis, D. (1996) Functional analogs for the reduction of certain nitrogenase substrates. Are multiple sites within the Fe/ Mo/S active center involved in the 6e- reduction of $N_{2}$? J. Biol. Inorg. Chem. 1, 594-600 https://doi.org/10.1007/s007750050098
  16. Pickett, C. J. (1996) The Chatt cycle and the mechanism of enzymic reduction of molecular nitrogen. J. Biol. Inorg. Chem. 1, 601-606 https://doi.org/10.1007/s007750050099
  17. Howard, J. B. and Rees, D. C. (1996) Structural basis of biological nitrogen fixation. Chem. Rev. 96, 2965-2982 https://doi.org/10.1021/cr9500545
  18. Richards, R. L. (1996) Reactions of small molecules at transition metal sites: studies relevant to nitrogenase, an organometallic enzyme. Coord. Chem. Rev. 154, 83-97 https://doi.org/10.1016/0010-8545(96)01186-1
  19. Bazhenova, T. A. and Shilov, A. E. (1995) Nitrogen fixation in solution. Coord. Chem. Rev. 144, 69-145 https://doi.org/10.1016/0010-8545(95)01139-G
  20. Eady, R. R. and Leigh, G. J. (1994) Metals in the nitrogenases. J. Chem. Soc., Dalton Trans, 2739-2747
  21. Ludden, P. W. (1994) In Nitrogenases & the Iron-Molybdenum Cofactor. King, R. B. Ed. Encyclopedia of Inorganic Chemistry, John Wiley & Sons, vol. 5. pp. 2566-2580
  22. Rees, D. C., Chan, M. K. and Kim, J. (1993) Structure and function of nitrogenase. Adv. Inorg. Chem. 40, 89 https://doi.org/10.1016/S0898-8838(08)60182-8
  23. Stiefel, E. I., Coucouvanis, D. and Newton, W. E. Ed. (1993). ACS Symposium Series, v. 535. Molybdenum Enzymes, Cofoactors, and Model Systems. D. C
  24. Stacy, G., Burris, R. H. and Evans, H. J. (1992) Biological Nitrogen Fixation, Chapman & Hall
  25. Burris, R. H. (1991) Nitrogenases. J. Biol. Chem. 266, 9339- 9342
  26. Coucouvanis, D. (1991) Use of preassembled iron/sulfur and iron/molybdenum/sulfur clusters in the stepwise synthesis of potential analogs for the Fe/Mo/S site in nitrogenase. Acc. Chem. Res. 24, 1-8 https://doi.org/10.1021/ar00001a001
  27. Burgmayer, S. J. N. and Stiefel, E. I. (1985) Molybdenum enzymes, cofactors, and systems: the chemical uniqueness of molybdenum. J. Chem. Ed. 62, 943 https://doi.org/10.1021/ed062p943
  28. Spiro, T. G. (1985) In Molybdenum Enzymes. John Wiley & Sons, New York
  29. Henderson, R. A., Leigh, G. J. and Pickett, C. J. (1983) The chemistry of nitrogen fixation and models for the reactions of nitrogenase. Adv. Inorg. Chem. Radiochem. 27, 197 https://doi.org/10.1016/S0898-8838(08)60108-7
  30. Muller, A. and Newton, W. E. (1983) In Nitrogen fixation. Plenum press, New York
  31. Eady, R. R. (1991) The Mo-, V-, Fe-based nitrogenase systems of Azotobacter, Adv. Inorg. Chem. 36, 77-102 https://doi.org/10.1016/S0898-8838(08)60037-9
  32. Luque, F. and Pau, R. N. (1991) Transcriptional regulation by metals of structural genes for Azotobacter vinelandii nitrogenases. Mol. Gen. Genet. 227, 481 https://doi.org/10.1007/BF00273941
  33. Rehder, D. (2000) Vanadium nitrogenase. J. Inorg. Biochem. 80, 133-136 https://doi.org/10.1016/S0162-0134(00)00049-0
  34. Ruttimann-Johnson, C., Staples, C. R., Rangaraj, P., Shah, V. K. and Ludden, P. W. (1999) A vanadium and iron cluster accumulates on VnfX during Iron-Vanadium-cofacter synthesis for the vanadium nitrogenase in Azotobacter vinelandii. J. Biol. Chem. 274, 18087-18092 https://doi.org/10.1074/jbc.274.25.18087
  35. Eady, R. R. (1996) Structure-function relationships of alternative nitrogenases. Chem. Rev. 96, 3013-3030 https://doi.org/10.1021/cr950057h
  36. Bishop, P. E., Jarlenski, D. M. L. and Hetherington, D. R. (1980) Evidence for an alternative nitrogen fixation system in Azotobacter vinelandii. Proc. Natl. Acad. Sci. USA 77, 7342- 7346 https://doi.org/10.1073/pnas.77.12.7342
  37. Chisnell, J. R., Remakumar, R. and Bishop, P. E. (1988) Purification of a second alternative nitrogenase from nifHDK deletion strain of Azotobacter vinelandii. J. Bacteriol. 170, 27- 33
  38. Schneider, K., Gollan, U., Dröttboom, M., Selsemeier-Voigt, S. and Muller, A. (1997) Comparative biochemical characterization of the iron-only nitrogenase and the molybdenum nitrogenase from Rhodoacter Capsulatus. Eur. J. Biochem. 244, 789-800 https://doi.org/10.1111/j.1432-1033.1997.t01-1-00789.x
  39. Rees, D. C. and Howard J. B. (2000) Nitrogenase: standing at the crossroads. Curr. Opin. Chem. Biol. 4, 559-566 https://doi.org/10.1016/S1367-5931(00)00132-0
  40. The activity of nitrogenase is generally represented by how much electrons are transferred to substrates because all electrons transferred to MoFe protein are used for substrate reduction
  41. Ribbe, M., Gadkari, D. and Meyer, O. (1997) $N_{2}$ fixation by Streptomyces thermoautotrophicus involves a molybdenumdinitrogenase and a manganese-superoxide oxidoreductase that couple $N_{2}$ redcution to the oxidation of superoxide produced from $O_{2}$ by a molybdenum-CO dehydrogenase. J. Biol. Chem. 272, 26627-26632 https://doi.org/10.1074/jbc.272.42.26627
  42. Erickson, J. A., Nyborg, A. C., Johnson, J. L., Truscott, S. M., Gunn, A., Nordmeyer, F. R. and Watt, G. D. (1999) Enhanced Efficiency of ATP Hydrolysis during Nitrogenase Catalysis Utilizing Reductants That Form the All-Ferrous Redox State of the Fe Protein. Biochemistry 38, 14279-14285 https://doi.org/10.1021/bi991389+
  43. Rees, D. C. and Howard, J. B. (1999) Structural bioenergetics and energy transduction mechanisms. J. Mol. Biol. 293, 343- 350 https://doi.org/10.1006/jmbi.1999.3005
  44. Clarke, T. A., Maritano, S. and Eady, R. R. (2000) Formation of a tight 1 : 1 complex of Clostridium pasteurianum Fe protein-Azotobacter vinelandii MoFe protein: evidence for longrange interactions between the Fe protein binding sites during catalytic hydrogen evolution. Biochemistry 39, 11434-11440 https://doi.org/10.1021/bi0002939
  45. ATP hydrolysis is not required for the electron transfer from Fe protein to MoFe protein, rather ATP accelerates electron transfer
  46. Chan, J. M., Wu, W., Dean, D. R. and Seefeldt, L. C. (2000) Construction and characterization of a heterodimeric iron protein: defining roles for adenosine triphosphate in nitrogenase catalysis. Biochemistry 39, 7221-7228 https://doi.org/10.1021/bi000219q
  47. Chan, J. M., Ryle, M. J. and Seefeldt, L. C.(1999) Evidnece that MgATP accelerates primary electron transfer in a Clostridium pasteurianum Fe protein-Azotobacter vinelandii MoFe protein nitrogenase tight complex. J. Biol. Chem. 274, 17593-17598 https://doi.org/10.1074/jbc.274.25.17593
  48. Burgess, B. K. and Lowe, D. J. (1996) Mechanism of molybdenum nitrogenase. Chem. Rev. 96, 2983-3012 https://doi.org/10.1021/cr950055x
  49. Seefeldt, L. C. and Dean, D. R. (1997) Role of nucleotides in nitrogenase catalysis. Acc. Chem. Res. 30, 260-266 https://doi.org/10.1021/ar960260e
  50. Howard, J. B. and Rees, D. C. (1994) Nitrogenase-a nucleotide-dependent molecular switch. Annu. Rev. Biochem. 63, 235-264 https://doi.org/10.1146/annurev.bi.63.070194.001315
  51. Kim, J. and Rees, D. C. (1992) Crystallographic structure and functional implications of the nitrogenase molybdenum-iron protein from Azotobacter vinelandii. Nature 360, 553-560 https://doi.org/10.1038/360553a0
  52. RCSB Protein Data Bank; http://www.rcsb.org/pdb/
  53. The abbreviations for MoFe protein (dinitrogenase) and Fe protein (dinitrogenase reductase) are 1 and 2, respectively. For example, MoFe protein of A. vinelandii is presented as Av1
  54. Einsle, O., Tezcan, F. A., Andrade, S. L. A., Schmid, B., Yoshida, M., Howard, J. B. and Rees, D. C. (2002) Nitrogeanse MoFe-protein at $1.16{\AA}$ resolution: a central ligand in the FeMo-cofactor. Science 297, 1696-1700 https://doi.org/10.1126/science.1073877
  55. Yoo, S. J., Angove, H. C., Burgess, B. K., Hendrich, M. P. and Münck, E. (1999) Mössbauer and interger-spin EPR studies and spin-coupling analysis of the $[4Fe-4S]^0$ cluster of the Fe protein from Azotobacter vinelandii nitrogenase. J. Am. Chem. Soc. 121, 2534-2545. https://doi.org/10.1021/ja9837405
  56. Watt, G. D. and Reddy, K. R. N. (1994) Formation of an all ferrous $Fe_{4}S_{4}$ cluster in the iron protein component of Azotobacter vinelandii nitrogenase. J. Inorg. Biochem. 53, 281- 294 https://doi.org/10.1016/0162-0134(94)85115-8
  57. Angove, H. C., Yoo, S. J., Munck, E. and Burgess, B. K. (1998) An all-ferrous state of the Fe protein of nitrogenase. Interaction with nucleotides and electron transfer to the MoFe protein. J. Biol. Chem. 273, 26330-26337 https://doi.org/10.1074/jbc.273.41.26330
  58. Angove, H. C., Yoo, S. J., Burgess, B. K. and Münck, E. (1997) Müssbauer and EPR evidence for an all-ferrous $Fe_{4}S_{4}$ cluster with S = 4 in the Fe protein of nitrogenase. J. Am. Chem. Soc. 119, 8730-8731 https://doi.org/10.1021/ja9712837
  59. Nyborg, A. C., Erickson, J. A., Johnson, J. L., Gunn, A., Truscott, S. M. and Watt, G. D. (2000) Reactions of Azotobacter vinelandii nitrogenase using Ti(III) as reductant. J. Inorg. Biochem. 78, 371-381 https://doi.org/10.1016/S0162-0134(00)00066-0
  60. Hausinger, R. P. and Howard, J. B. (1983) Thiol reactivity of the nitrogenase Fe-protein from Azotobacter vinelandii. J. Biol. Chem. 258, 13486-13492
  61. Ribbe, M. W., Bursey, E. H. and Burgess, B. K. (2000) Identification of an Fe protein residue (Glu146) of Azotobacter vinelandii nitrogenase that is specifically involved in FeMo cofactor insertion. J. Biol. Chem. 275, 17631-17638 https://doi.org/10.1074/jbc.275.23.17631
  62. Schindelin, H., Kisker, C., Schlessman, J. L., Howard, J. B. and Rees, D. C. (1997) Structure of $ADP{\cdot}AIF_{4}^-$-stabilized nitrogenase complex and its implications for signal transduction. Nature 387, 370-376 https://doi.org/10.1038/387370a0
  63. Grossmann, J. G., Hasnain, S. S., Yousafzai, F. K., Smith, B. E., Eady, R. R., Schindelin, H., Kisker, C., Howard, J. B., Tsuruta, H., Muller, J. and Rees, D. C. (1999) Comparing crystallographic and solution structures of nitrogenase complexes. Acta Cryst. D55, 727-728
  64. Strop, P., Takahara, P. M., Chiu, H.-J., Angove, H. C., Burgess, B. K. and Rees, D. C. (2001) Crystal structure of the allferrous $[4Fe-4S]^0$ form of the Nitrogenase Iron protein from Azotobacter vinelandii. Biochemistry 40, 651-656. https://doi.org/10.1021/bi0016467
  65. McLean, P. A., Papaefthymiou, V., Orme-Johnson, W. H. and Münck, E. (1975) Isotopic hydrids of nitrogenase. Mössbauer study of MoFe protein with selective $^{57}Fe$ enrichment of the Pcluster. J. Biol. Chem. 262, 12900-12903
  66. Peters, J. W., Stowell, M. H. B., Soltis, S. M., Finnegan, M. G., Johnson, M. K. and Rees, D. C. (1997) Redox-dependent structural changes in the nitrogenase P-cluster. Biochemistry 36, 1181-1187 https://doi.org/10.1021/bi9626665
  67. The amino acid sequence of nitrogenase follows A. vinelandii
  68. Dos Santos, P. C., Dean, D. R., Hu, Y. and Ribbe, M. W. (2004) Formation and insertion of the nitrogenase ironmolybdenum cofactor. Chem. Rev. 104, 1159-1173 https://doi.org/10.1021/cr020608l
  69. Rawlings, J., Shah, V. K., Chisnell, J. R., Brill, W. J., Zimmerman, R., Munck, E. and Orme-Johnson, W. H. (1978) Novel metal cluster in the iron-molybdenum cofactor of nitrogenase. Spectroscopic evidence. J. Biol. Chem. 253, 1001- 1004
  70. Li, J.-Ge., Burgess, B. K. and Corbin, J. L. (1982) Nitrogenase reactivity: Cyanide as substrate and inhibitor. Biochemistry 21, 4393-4402 https://doi.org/10.1021/bi00261a031
  71. Ryle, M. J., Lee, H.-I., Seefeldt, L. C. and Hoffman, B. M. (2000) Nitrogenase reduction of carbon disulfide: freeze-quench EPR and ENDOR evidence for three sequential intermediates with cluster-bound carbon moieties. Biochemitry 39, 1114-1119
  72. Benton, P. M. C., Christiansen, J., Dean, D. R. and Seefeldt, L. C. (2001) Stereospecificity of acetylene reduction catalyzed by nitrogenase. Am. Chem. Soc. 123, 1822-1827 https://doi.org/10.1021/ja003662x
  73. Nyborg, A. C., Johnson, J. L., Gunn, A. and Watt, G. D. (2000) Evidence for a two-electron transfer using the all-ferrous Fe protein during nitrogenase catalysis. J. Biol. Chem. 275, 39307- 39312 https://doi.org/10.1074/jbc.M007069200
  74. Hadfield, K. L. and Bulen, W. A. (1969) Adenosine triphosphate requirement of nitrogenase from Azotobacter vinelandii. Biochemistry 8, 5103-5108 https://doi.org/10.1021/bi00840a064
  75. Rivera-Ortiz, J. M. and Burris, R. H. (1975) Interactions among substrate and inhibitors of nitrogenase. J. Bacteriol. 123, 537- 545
  76. Simpson, F. B. and Burris, R. H. (1984) A nitroegen pressure of 50 atmosphreres does not prevent evolution of hydrogen by nitrogenase. Science 224, 1095-1097 https://doi.org/10.1126/science.6585956
  77. Hardy, R. W. F., Burns, R. C., Stansny, J. T. and Parashall, G. W. (1975) In Nitrogen Fixation by Free-living Microorganisms, Stewart, W. D. P. ed. IBP. 6. pp. 351-376
  78. Fisher, K., Lowe, D. J. and Thorneley, R. N. F. (1991) Klebsiella pneumoniae nitrogenase. The pre-steady-state kinetics of MoFe-protein reduction and hydrogen evolution under conditions of limiting electron flux show that the rates of association with the Fe-protein and electron transfer are independent of the oxidation level of the MoFe-protein. Biochem. J. 279, 81-85
  79. The terminology of 'apo-MoFe protein' was used historically to designate FeMo-cofactor void MoFe protein, which formed from nifE, nifN, nifB or nifH mutant. Strictly speaking, these proteins contain P-cluster and 'apo' is misnomer. Besides, apo- MoFe proteins isolated from nifE, nifN, or nif B mutant were reported different from that of nifH mutant
  80. Shah, V. K. and Brill, W. J. (1977) Isolation of an ironmolybdenum cofactor from nitrogenase. Proc. Natl. Acad. Sci. USA 74, 3249-3253
  81. Christiansen, J., Goodwin, P. J., Lanzilotta, W. N., Seefeldt, L. C. and Dean, D. R. (1998) Catalytic and biophysical properties of a nitrogenase apo-MoFe protein produced by a nifB-deletion mutant of Azotobacter vinelandii. Biochemistry 37, 12611- 12623 https://doi.org/10.1021/bi981165b
  82. Liang, J., Madden, M., Shah, V. K. and Burris, R. H. (1990) Citrate substitutes for homocitrate in nitrogenase of a nifV mutant of Klebsiella pneumoniae. Biochemistry 29, 8577-8581 https://doi.org/10.1021/bi00489a011
  83. Mayer, S. M., Gormal, C. A., Smith, B. E. and Lawson, D. M. (2002) Crystallographic analysis of the MoFe protein of nitrogenase from a nifV mutant of Klebsiella pneumoniae identifies citrate as a ligand to the molybdenum of Iron Molybdenum cofactor (FeMoco). J. Biol. Chem. 277, 35263- 35266 https://doi.org/10.1074/jbc.M205888200
  84. McLean, P. A. and Dixon, R. A. (1981) Requirement of nifV gene for production of wild-type nitrogenase enzyme in Klebsiella pneumoniae. Nature 292, 655-657 https://doi.org/10.1038/292655a0
  85. Hawkes, T. R., McLean, P. A. and Smith, B. E. (1984) Nitrogenase from nifV mutants of Klebsiella pneumoniae contains an altered form of the iron-molybdenum cofactor. Biochem. J. 217, 317-321
  86. Scott, D. J., May, H. D., Newton, W. E., Brigle, K. E. and Dean, D. R. (1990) Role for the nitrogenase MoFe protein $\alpha$- subunit in FeMo-cofactor binding and catalysis. Nature 343, 188-190 https://doi.org/10.1038/343188a0
  87. Mayer, S. M., Niehaus, W. G. and Dean, D. R. (2002) Reduction of short chain alkynes by a nitrogenase ${\alpha}$-$70^{Ala}$- substituted MoFe protein. J. Chem. Soc., Dalton Trans. 802- 807
  88. Christiansen, J., Cash, V. L., Seefeldt, L. D. and Dean, D. R. (2000) Isolation and characterization of an acetylene-resistant nitrogenase. J. Biol. Chem. 275, 11459-11464 https://doi.org/10.1074/jbc.275.15.11459
  89. Christiansen, J., Seefeldt, L. D. and Dean, D. R. (2000) Competitive substrate and inhibitor interactions at the physiologically relevant active site of nitrogenase. J. Biol. Chem. 275, 36104-36107 https://doi.org/10.1074/jbc.M004889200
  90. Davis, L. C. and Wang, Y.-L. (1980) In vivo and in vitro kinetics of nitrogenase J. Bacteriol. 141, 1230-1238
  91. Maskos, Z. and Hales, B. J. (2003) Photo-lability of CO bound to Mo-nitrogenase from Aztobacter vinelandii. J. Inorg. Biochem. 93, 11-17 https://doi.org/10.1016/S0162-0134(02)00480-4
  92. McLean, P. A., True, A., Nelson, M. J., Lee, H.-I., Hoffman, B. M. and Orme-Johnson, W. H. (2003) Effects of substrates (methyl isocyanide, $C_{2}H_{2}$) and inhibitor (CO) on resting-state wild-type and NifV-Klebsiella pneumoniae MoFe proteins. J. Inorg. Biochem. 93, 18-32 https://doi.org/10.1016/S0162-0134(02)00580-9
  93. Han, J. and Newton, W. E. (2004) Differentiation of acetylenereduction sites by stereoselective proton addition during Azotobacter vinelandii nitrogenase-catalyzed $C_{2}D_{2}$ reduction. Biochemistry 43, 2947-2956 https://doi.org/10.1021/bi035247y
  94. Durrant, M. C. (2004) An atomic level model for the interactions of molybdenum nitrogenase with carbon monoxide, acetylene, and ethylene. Biochemistry 43, 6030-6042 https://doi.org/10.1021/bi036300l
  95. Dance, I. (2004) The mechanism of nitrogenase. Computed details of the site and geometry of binding of alkyne and alkene substrates and intermediates. J. Am. Chem. Soc. 126, 11852-11863 https://doi.org/10.1021/ja0481070
  96. Thorneley, R. N. F. and Lowe, D. J. (1985) In Molybdenum Enzymes; Spiro, T. G., Ed.; Wiley-Interscience: New York, p 221
  97. Smith, B. E., Durrant, M. C., Fairhurst, S. A., Gormal, C. A., Gronberg, K. L. C., Henderson, R. A., Ibrahim, S. K., Le Gall, T. and Pickett, C. J. (1999) Exploring the reactivity of the isolated iron-molybdenum cofactor of nitrogenase. Coord. Chem. Rev. 185-186, 669-687
  98. Dos Santos, P. C., Igarashi, R. Y., Lee, H.-I., Hoffman, B. M., Seefeldt, L. C. and Dean, D. R. (2005) Substrate interactions with the nitrogenase active site. Acc. Chem. Res. 38, 208-214 https://doi.org/10.1021/ar040050z
  99. Lee, H.-I., Igarashi, R. Y., Laryukhin, M., Doan, P. E., Dos Santos, P. C., Dean, D. R., Seefeldt, L. C. and Hoffman, B. M. (2004) An organometallic intermediate during alkyne reduction by nitrogenase. J. Am. Chem. Soc. 126, 9563-9569 https://doi.org/10.1021/ja048714n
  100. Sellman, D., Fursattel, A. and Sutter, J. (2000) The nitrogenase catalyzed $N_2$ dependent HD formation: a model reaction and its significance for the FeMoco function. Coord. Chem. Rev. 200, 545-561 https://doi.org/10.1016/S0010-8545(99)00240-4
  101. Durrant, M. C. (2001) Controlled protonation of ironmolybdenum cofactor by nitrogenases: a structural and theoretical analysis. Biochem. J. 355, 569-576
  102. Han, J. and Coucouvanis, D. (2005) Synthesis and structure of the Organometallic $MFe_{2}$$({\mu}_{3}-S)_2$ clusters (M = Mo or Fe) Dalton Trans. 1234-1240
  103. Nava, P., Han, J., Ahlrichs, R. and Coucouvanis, D. (2004) An evaluation by density functional theory of M-M interactions in organometallic clusters with the $[Fe_3MoS_3]^{2+}$ cores. Inorg. Chem. 43, 3225-3229. https://doi.org/10.1021/ic0499392
  104. Coucouvanis, D., Han, J., Ahlrichs, R., Nava, P. and Huniar, U. (2003) Density functional theory calculations on the nitrogenase cofactor and synthetic analogs. J. Inorg. Biochem. 96, 19-19
  105. Coucouvanis, D., Han, J. and Moon, N. (2002) Synthesis and characterization of sulfur-voided cubanes. Structural analogs for the $MoFe_{3}S_{3}$ subunit in the nitrogenase cofactor. J. Am. Chem. Soc. 124, 216-224 https://doi.org/10.1021/ja0110832
  106. Han, J., Beck, K., Ockwig, N. and Coucouvanis, D. (1999) Synthetic analogs for the $MoFe_{3}S_{3}$ subunit of the nitrogenase cofactor: Structural features associated with the total number of valence electrons and the possible role of M-M and multiple M-S bonding in the function of Nitrogenase. J. Am. Chem. Soc. 121, 10448-10449 https://doi.org/10.1021/ja991880o
  107. Rao, P. V. and Holm, R. H. (2004) Synthetic analogues of the active sites of iron-sulfur proteins. Chem. Rev. 104, 527-559 https://doi.org/10.1021/cr020615+
  108. Lee, S. C. and Holm, R. H. (2004) The clusters of nitrogenase: Synthetic methodology in the construction of weak-field clusters. Chem. Rev. 104, 1135-1157 https://doi.org/10.1021/cr0206216
  109. Zhang, Y. and Holm, R. H. (2004) Structural conversions of molybdenum-iron-sulfur edge-bridged double cubanes and PN- type clusters topologically related to the nitrogenase Pcluster. Inorg. Chem. 43, 674-682 https://doi.org/10.1021/ic030259t
  110. Lee, S. C. and Holm, R. H. (2003) Speculative synthetic chemistry and the nitrogenase problem. Proc. Nat'l. Acad. Sci. USA 100, 3595-3600
  111. Although 1Mo4+, 1Fe3+, 6Fe3+ model was suggested by ENDOR spectroscopic study, Yoo, et al's result is recently more supported.
  112. Yoo, S. J., Angove, H. C., Papaethymiou, V., Burgess, B. K. and Munck, E. (2000) Mössbauer study of the MoFe protein of nitrogenase from Azotobacter vinelandii using selective Fe- 57 enrichment of the M-centers. J. Am. Chem. Soc. 122, 4926-4936 https://doi.org/10.1021/ja000254k
  113. Hinnemann, B. and Norskov, J. K. (2003) Modeling a central ligand in the nitrogenase FeMo cofactor. J. Am. Chem. Soc. 125, 1466-1467 https://doi.org/10.1021/ja029041g
  114. Lee, H.-I., Benton, P. M. C., Laryukhin, M., Igarashi, R. Y., Dean, D. R., Seefeldt, L. C. and Hoffman, B. M. (2003) The interstitial atom of the nitrogenase FeMo-cofactor: ENDOR and ESEEM show it is not an exchangeable nitrogen. J. Am. Chem. Soc. 125, 5604-5605 https://doi.org/10.1021/ja034383n
  115. The distances are very short, considering hydrogen atoms are bonded to the amino acid residues
  116. It is reported recently that the atom inside FeMo-cofactor may not be nitrogen atom. Yang, T.-C., Maeser, N. K., Laryukhin, M., Lee, H.-I., Dean, D. R., Seefeldt, L. C. and Hoffman, B. M. (2005) The interstitial atom of the nitrogenase FeMocofactor: ENDOR and ESEEM evidence that it is not a nitrogen. J. Am. Chem. Soc. ASAP ja0552489