References
- Smil, V. (2000) In Enriching the earth: Fritz Haber, Carl Bosch, and the transformation of world food production (1st ed.) MIT Press, Cambridge, MA
- Jennings, J. R. (1991) In Catalytic Ammonia Synthesis, Plenum press, New York
- Etrl, G. (1980) Surface science and catalysis-studies on the mechanism of ammonia synthesis. Catal. Rev.-Sci. Eng. 21, 201
- Boudart, M. (1980) Kinetics and mechanism of ammonia synthesis. Catal. Rev. 23, 1
- Rees, D. C. and Howard J. B. (2000) Nitrogenase: standing at the crossroads. Curr. Opin. Chem. Biol. 4, 559-566 https://doi.org/10.1016/S1367-5931(00)00132-0
- Pedrosa, F. O., Hungria, M., Yates, G. and Newton, W. E. (1999) Nitrogen Fixation: From molecules to Crop Productivity. In Current Plant Science and Biotechnology in Agriculture, vol. 38, Kluwer Academic Publ. London
-
Sellman, D., Utz, J., Blum, N. and Heinemann, F. W. (1999) On the function of nitrogenase FeMo cofactors and competitive catalysts: chemical priniciples, structural blue-prints, and the relevance of iron sulfur complexes for
$N_{2}$ fixation. Coord. Chem. Rev. 190-192, 607-627 - Smith, B. E. (1999) Structure, function, and biosynthesis of the metallosulfur clusters in nitrogenases. Adv. Inorg. Chem. 47, 159 https://doi.org/10.1016/S0898-8838(08)60078-1
- Sharp, R. E. and Chapman, S. K. (1999) Mechanisms for regulating electron transfer in multi-centre redox proteins. Biochim. Biophys. Acta. 1432, 143-158
- Dance, I. (1998) Understanding structure and reactivity of new fundamental inorganic molecules: metal sulfides, metallocarbohedrenes, and nitrogenase. Chem. Comm. 523-530
- Tuczek, F. and Lehnert, N. (1998) New developments in nitrogen fixation. Angew. Chem. Int. Ed. 37, 2636-2638 https://doi.org/10.1002/(SICI)1521-3773(19981016)37:19<2636::AID-ANIE2636>3.0.CO;2-Q
- Kisker, C., Schindelin, H. and Rees, D. C. (1997) Molybdenum-cofactor-containing enzymes: structure and mechanism. Ann. Rev. Biochem. 66, 233-267 https://doi.org/10.1146/annurev.biochem.66.1.233
- Thorneley, R. N. F. and Lowe, D. J. (1996) Nitrogenase: substrate binding and activation. J. Biol. Inorg. Chem. 1, 576- 580 https://doi.org/10.1007/s007750050095
- Dance, I. (1996) Theoretical investigations of the mechanism of biological nitrogen fixation at the FeMo cluster site. J. Biol. Inorg. Chem. 1, 581-586 https://doi.org/10.1007/s007750050096
-
Coucouvanis, D. (1996) Functional analogs for the reduction of certain nitrogenase substrates. Are multiple sites within the Fe/ Mo/S active center involved in the 6e- reduction of
$N_{2}$ ? J. Biol. Inorg. Chem. 1, 594-600 https://doi.org/10.1007/s007750050098 - Pickett, C. J. (1996) The Chatt cycle and the mechanism of enzymic reduction of molecular nitrogen. J. Biol. Inorg. Chem. 1, 601-606 https://doi.org/10.1007/s007750050099
- Howard, J. B. and Rees, D. C. (1996) Structural basis of biological nitrogen fixation. Chem. Rev. 96, 2965-2982 https://doi.org/10.1021/cr9500545
- Richards, R. L. (1996) Reactions of small molecules at transition metal sites: studies relevant to nitrogenase, an organometallic enzyme. Coord. Chem. Rev. 154, 83-97 https://doi.org/10.1016/0010-8545(96)01186-1
- Bazhenova, T. A. and Shilov, A. E. (1995) Nitrogen fixation in solution. Coord. Chem. Rev. 144, 69-145 https://doi.org/10.1016/0010-8545(95)01139-G
- Eady, R. R. and Leigh, G. J. (1994) Metals in the nitrogenases. J. Chem. Soc., Dalton Trans, 2739-2747
- Ludden, P. W. (1994) In Nitrogenases & the Iron-Molybdenum Cofactor. King, R. B. Ed. Encyclopedia of Inorganic Chemistry, John Wiley & Sons, vol. 5. pp. 2566-2580
- Rees, D. C., Chan, M. K. and Kim, J. (1993) Structure and function of nitrogenase. Adv. Inorg. Chem. 40, 89 https://doi.org/10.1016/S0898-8838(08)60182-8
- Stiefel, E. I., Coucouvanis, D. and Newton, W. E. Ed. (1993). ACS Symposium Series, v. 535. Molybdenum Enzymes, Cofoactors, and Model Systems. D. C
- Stacy, G., Burris, R. H. and Evans, H. J. (1992) Biological Nitrogen Fixation, Chapman & Hall
- Burris, R. H. (1991) Nitrogenases. J. Biol. Chem. 266, 9339- 9342
- Coucouvanis, D. (1991) Use of preassembled iron/sulfur and iron/molybdenum/sulfur clusters in the stepwise synthesis of potential analogs for the Fe/Mo/S site in nitrogenase. Acc. Chem. Res. 24, 1-8 https://doi.org/10.1021/ar00001a001
- Burgmayer, S. J. N. and Stiefel, E. I. (1985) Molybdenum enzymes, cofactors, and systems: the chemical uniqueness of molybdenum. J. Chem. Ed. 62, 943 https://doi.org/10.1021/ed062p943
- Spiro, T. G. (1985) In Molybdenum Enzymes. John Wiley & Sons, New York
- Henderson, R. A., Leigh, G. J. and Pickett, C. J. (1983) The chemistry of nitrogen fixation and models for the reactions of nitrogenase. Adv. Inorg. Chem. Radiochem. 27, 197 https://doi.org/10.1016/S0898-8838(08)60108-7
- Muller, A. and Newton, W. E. (1983) In Nitrogen fixation. Plenum press, New York
- Eady, R. R. (1991) The Mo-, V-, Fe-based nitrogenase systems of Azotobacter, Adv. Inorg. Chem. 36, 77-102 https://doi.org/10.1016/S0898-8838(08)60037-9
- Luque, F. and Pau, R. N. (1991) Transcriptional regulation by metals of structural genes for Azotobacter vinelandii nitrogenases. Mol. Gen. Genet. 227, 481 https://doi.org/10.1007/BF00273941
- Rehder, D. (2000) Vanadium nitrogenase. J. Inorg. Biochem. 80, 133-136 https://doi.org/10.1016/S0162-0134(00)00049-0
- Ruttimann-Johnson, C., Staples, C. R., Rangaraj, P., Shah, V. K. and Ludden, P. W. (1999) A vanadium and iron cluster accumulates on VnfX during Iron-Vanadium-cofacter synthesis for the vanadium nitrogenase in Azotobacter vinelandii. J. Biol. Chem. 274, 18087-18092 https://doi.org/10.1074/jbc.274.25.18087
- Eady, R. R. (1996) Structure-function relationships of alternative nitrogenases. Chem. Rev. 96, 3013-3030 https://doi.org/10.1021/cr950057h
- Bishop, P. E., Jarlenski, D. M. L. and Hetherington, D. R. (1980) Evidence for an alternative nitrogen fixation system in Azotobacter vinelandii. Proc. Natl. Acad. Sci. USA 77, 7342- 7346 https://doi.org/10.1073/pnas.77.12.7342
- Chisnell, J. R., Remakumar, R. and Bishop, P. E. (1988) Purification of a second alternative nitrogenase from nifHDK deletion strain of Azotobacter vinelandii. J. Bacteriol. 170, 27- 33
- Schneider, K., Gollan, U., Dröttboom, M., Selsemeier-Voigt, S. and Muller, A. (1997) Comparative biochemical characterization of the iron-only nitrogenase and the molybdenum nitrogenase from Rhodoacter Capsulatus. Eur. J. Biochem. 244, 789-800 https://doi.org/10.1111/j.1432-1033.1997.t01-1-00789.x
- Rees, D. C. and Howard J. B. (2000) Nitrogenase: standing at the crossroads. Curr. Opin. Chem. Biol. 4, 559-566 https://doi.org/10.1016/S1367-5931(00)00132-0
- The activity of nitrogenase is generally represented by how much electrons are transferred to substrates because all electrons transferred to MoFe protein are used for substrate reduction
-
Ribbe, M., Gadkari, D. and Meyer, O. (1997)
$N_{2}$ fixation by Streptomyces thermoautotrophicus involves a molybdenumdinitrogenase and a manganese-superoxide oxidoreductase that couple$N_{2}$ redcution to the oxidation of superoxide produced from$O_{2}$ by a molybdenum-CO dehydrogenase. J. Biol. Chem. 272, 26627-26632 https://doi.org/10.1074/jbc.272.42.26627 - Erickson, J. A., Nyborg, A. C., Johnson, J. L., Truscott, S. M., Gunn, A., Nordmeyer, F. R. and Watt, G. D. (1999) Enhanced Efficiency of ATP Hydrolysis during Nitrogenase Catalysis Utilizing Reductants That Form the All-Ferrous Redox State of the Fe Protein. Biochemistry 38, 14279-14285 https://doi.org/10.1021/bi991389+
- Rees, D. C. and Howard, J. B. (1999) Structural bioenergetics and energy transduction mechanisms. J. Mol. Biol. 293, 343- 350 https://doi.org/10.1006/jmbi.1999.3005
- Clarke, T. A., Maritano, S. and Eady, R. R. (2000) Formation of a tight 1 : 1 complex of Clostridium pasteurianum Fe protein-Azotobacter vinelandii MoFe protein: evidence for longrange interactions between the Fe protein binding sites during catalytic hydrogen evolution. Biochemistry 39, 11434-11440 https://doi.org/10.1021/bi0002939
- ATP hydrolysis is not required for the electron transfer from Fe protein to MoFe protein, rather ATP accelerates electron transfer
- Chan, J. M., Wu, W., Dean, D. R. and Seefeldt, L. C. (2000) Construction and characterization of a heterodimeric iron protein: defining roles for adenosine triphosphate in nitrogenase catalysis. Biochemistry 39, 7221-7228 https://doi.org/10.1021/bi000219q
- Chan, J. M., Ryle, M. J. and Seefeldt, L. C.(1999) Evidnece that MgATP accelerates primary electron transfer in a Clostridium pasteurianum Fe protein-Azotobacter vinelandii MoFe protein nitrogenase tight complex. J. Biol. Chem. 274, 17593-17598 https://doi.org/10.1074/jbc.274.25.17593
- Burgess, B. K. and Lowe, D. J. (1996) Mechanism of molybdenum nitrogenase. Chem. Rev. 96, 2983-3012 https://doi.org/10.1021/cr950055x
- Seefeldt, L. C. and Dean, D. R. (1997) Role of nucleotides in nitrogenase catalysis. Acc. Chem. Res. 30, 260-266 https://doi.org/10.1021/ar960260e
- Howard, J. B. and Rees, D. C. (1994) Nitrogenase-a nucleotide-dependent molecular switch. Annu. Rev. Biochem. 63, 235-264 https://doi.org/10.1146/annurev.bi.63.070194.001315
- Kim, J. and Rees, D. C. (1992) Crystallographic structure and functional implications of the nitrogenase molybdenum-iron protein from Azotobacter vinelandii. Nature 360, 553-560 https://doi.org/10.1038/360553a0
- RCSB Protein Data Bank; http://www.rcsb.org/pdb/
- The abbreviations for MoFe protein (dinitrogenase) and Fe protein (dinitrogenase reductase) are 1 and 2, respectively. For example, MoFe protein of A. vinelandii is presented as Av1
-
Einsle, O., Tezcan, F. A., Andrade, S. L. A., Schmid, B., Yoshida, M., Howard, J. B. and Rees, D. C. (2002) Nitrogeanse MoFe-protein at
$1.16{\AA}$ resolution: a central ligand in the FeMo-cofactor. Science 297, 1696-1700 https://doi.org/10.1126/science.1073877 -
Yoo, S. J., Angove, H. C., Burgess, B. K., Hendrich, M. P. and Münck, E. (1999) Mössbauer and interger-spin EPR studies and spin-coupling analysis of the
$[4Fe-4S]^0$ cluster of the Fe protein from Azotobacter vinelandii nitrogenase. J. Am. Chem. Soc. 121, 2534-2545. https://doi.org/10.1021/ja9837405 -
Watt, G. D. and Reddy, K. R. N. (1994) Formation of an all ferrous
$Fe_{4}S_{4}$ cluster in the iron protein component of Azotobacter vinelandii nitrogenase. J. Inorg. Biochem. 53, 281- 294 https://doi.org/10.1016/0162-0134(94)85115-8 - Angove, H. C., Yoo, S. J., Munck, E. and Burgess, B. K. (1998) An all-ferrous state of the Fe protein of nitrogenase. Interaction with nucleotides and electron transfer to the MoFe protein. J. Biol. Chem. 273, 26330-26337 https://doi.org/10.1074/jbc.273.41.26330
-
Angove, H. C., Yoo, S. J., Burgess, B. K. and Münck, E. (1997) Müssbauer and EPR evidence for an all-ferrous
$Fe_{4}S_{4}$ cluster with S = 4 in the Fe protein of nitrogenase. J. Am. Chem. Soc. 119, 8730-8731 https://doi.org/10.1021/ja9712837 - Nyborg, A. C., Erickson, J. A., Johnson, J. L., Gunn, A., Truscott, S. M. and Watt, G. D. (2000) Reactions of Azotobacter vinelandii nitrogenase using Ti(III) as reductant. J. Inorg. Biochem. 78, 371-381 https://doi.org/10.1016/S0162-0134(00)00066-0
- Hausinger, R. P. and Howard, J. B. (1983) Thiol reactivity of the nitrogenase Fe-protein from Azotobacter vinelandii. J. Biol. Chem. 258, 13486-13492
- Ribbe, M. W., Bursey, E. H. and Burgess, B. K. (2000) Identification of an Fe protein residue (Glu146) of Azotobacter vinelandii nitrogenase that is specifically involved in FeMo cofactor insertion. J. Biol. Chem. 275, 17631-17638 https://doi.org/10.1074/jbc.275.23.17631
-
Schindelin, H., Kisker, C., Schlessman, J. L., Howard, J. B. and Rees, D. C. (1997) Structure of
$ADP{\cdot}AIF_{4}^-$ -stabilized nitrogenase complex and its implications for signal transduction. Nature 387, 370-376 https://doi.org/10.1038/387370a0 - Grossmann, J. G., Hasnain, S. S., Yousafzai, F. K., Smith, B. E., Eady, R. R., Schindelin, H., Kisker, C., Howard, J. B., Tsuruta, H., Muller, J. and Rees, D. C. (1999) Comparing crystallographic and solution structures of nitrogenase complexes. Acta Cryst. D55, 727-728
-
Strop, P., Takahara, P. M., Chiu, H.-J., Angove, H. C., Burgess, B. K. and Rees, D. C. (2001) Crystal structure of the allferrous
$[4Fe-4S]^0$ form of the Nitrogenase Iron protein from Azotobacter vinelandii. Biochemistry 40, 651-656. https://doi.org/10.1021/bi0016467 -
McLean, P. A., Papaefthymiou, V., Orme-Johnson, W. H. and Münck, E. (1975) Isotopic hydrids of nitrogenase. Mössbauer study of MoFe protein with selective
$^{57}Fe$ enrichment of the Pcluster. J. Biol. Chem. 262, 12900-12903 - Peters, J. W., Stowell, M. H. B., Soltis, S. M., Finnegan, M. G., Johnson, M. K. and Rees, D. C. (1997) Redox-dependent structural changes in the nitrogenase P-cluster. Biochemistry 36, 1181-1187 https://doi.org/10.1021/bi9626665
- The amino acid sequence of nitrogenase follows A. vinelandii
- Dos Santos, P. C., Dean, D. R., Hu, Y. and Ribbe, M. W. (2004) Formation and insertion of the nitrogenase ironmolybdenum cofactor. Chem. Rev. 104, 1159-1173 https://doi.org/10.1021/cr020608l
- Rawlings, J., Shah, V. K., Chisnell, J. R., Brill, W. J., Zimmerman, R., Munck, E. and Orme-Johnson, W. H. (1978) Novel metal cluster in the iron-molybdenum cofactor of nitrogenase. Spectroscopic evidence. J. Biol. Chem. 253, 1001- 1004
- Li, J.-Ge., Burgess, B. K. and Corbin, J. L. (1982) Nitrogenase reactivity: Cyanide as substrate and inhibitor. Biochemistry 21, 4393-4402 https://doi.org/10.1021/bi00261a031
- Ryle, M. J., Lee, H.-I., Seefeldt, L. C. and Hoffman, B. M. (2000) Nitrogenase reduction of carbon disulfide: freeze-quench EPR and ENDOR evidence for three sequential intermediates with cluster-bound carbon moieties. Biochemitry 39, 1114-1119
- Benton, P. M. C., Christiansen, J., Dean, D. R. and Seefeldt, L. C. (2001) Stereospecificity of acetylene reduction catalyzed by nitrogenase. Am. Chem. Soc. 123, 1822-1827 https://doi.org/10.1021/ja003662x
- Nyborg, A. C., Johnson, J. L., Gunn, A. and Watt, G. D. (2000) Evidence for a two-electron transfer using the all-ferrous Fe protein during nitrogenase catalysis. J. Biol. Chem. 275, 39307- 39312 https://doi.org/10.1074/jbc.M007069200
- Hadfield, K. L. and Bulen, W. A. (1969) Adenosine triphosphate requirement of nitrogenase from Azotobacter vinelandii. Biochemistry 8, 5103-5108 https://doi.org/10.1021/bi00840a064
- Rivera-Ortiz, J. M. and Burris, R. H. (1975) Interactions among substrate and inhibitors of nitrogenase. J. Bacteriol. 123, 537- 545
- Simpson, F. B. and Burris, R. H. (1984) A nitroegen pressure of 50 atmosphreres does not prevent evolution of hydrogen by nitrogenase. Science 224, 1095-1097 https://doi.org/10.1126/science.6585956
- Hardy, R. W. F., Burns, R. C., Stansny, J. T. and Parashall, G. W. (1975) In Nitrogen Fixation by Free-living Microorganisms, Stewart, W. D. P. ed. IBP. 6. pp. 351-376
- Fisher, K., Lowe, D. J. and Thorneley, R. N. F. (1991) Klebsiella pneumoniae nitrogenase. The pre-steady-state kinetics of MoFe-protein reduction and hydrogen evolution under conditions of limiting electron flux show that the rates of association with the Fe-protein and electron transfer are independent of the oxidation level of the MoFe-protein. Biochem. J. 279, 81-85
- The terminology of 'apo-MoFe protein' was used historically to designate FeMo-cofactor void MoFe protein, which formed from nifE, nifN, nifB or nifH mutant. Strictly speaking, these proteins contain P-cluster and 'apo' is misnomer. Besides, apo- MoFe proteins isolated from nifE, nifN, or nif B mutant were reported different from that of nifH mutant
- Shah, V. K. and Brill, W. J. (1977) Isolation of an ironmolybdenum cofactor from nitrogenase. Proc. Natl. Acad. Sci. USA 74, 3249-3253
- Christiansen, J., Goodwin, P. J., Lanzilotta, W. N., Seefeldt, L. C. and Dean, D. R. (1998) Catalytic and biophysical properties of a nitrogenase apo-MoFe protein produced by a nifB-deletion mutant of Azotobacter vinelandii. Biochemistry 37, 12611- 12623 https://doi.org/10.1021/bi981165b
- Liang, J., Madden, M., Shah, V. K. and Burris, R. H. (1990) Citrate substitutes for homocitrate in nitrogenase of a nifV mutant of Klebsiella pneumoniae. Biochemistry 29, 8577-8581 https://doi.org/10.1021/bi00489a011
- Mayer, S. M., Gormal, C. A., Smith, B. E. and Lawson, D. M. (2002) Crystallographic analysis of the MoFe protein of nitrogenase from a nifV mutant of Klebsiella pneumoniae identifies citrate as a ligand to the molybdenum of Iron Molybdenum cofactor (FeMoco). J. Biol. Chem. 277, 35263- 35266 https://doi.org/10.1074/jbc.M205888200
- McLean, P. A. and Dixon, R. A. (1981) Requirement of nifV gene for production of wild-type nitrogenase enzyme in Klebsiella pneumoniae. Nature 292, 655-657 https://doi.org/10.1038/292655a0
- Hawkes, T. R., McLean, P. A. and Smith, B. E. (1984) Nitrogenase from nifV mutants of Klebsiella pneumoniae contains an altered form of the iron-molybdenum cofactor. Biochem. J. 217, 317-321
-
Scott, D. J., May, H. D., Newton, W. E., Brigle, K. E. and Dean, D. R. (1990) Role for the nitrogenase MoFe protein
$\alpha$ - subunit in FeMo-cofactor binding and catalysis. Nature 343, 188-190 https://doi.org/10.1038/343188a0 -
Mayer, S. M., Niehaus, W. G. and Dean, D. R. (2002) Reduction of short chain alkynes by a nitrogenase
${\alpha}$ -$70^{Ala}$ - substituted MoFe protein. J. Chem. Soc., Dalton Trans. 802- 807 - Christiansen, J., Cash, V. L., Seefeldt, L. D. and Dean, D. R. (2000) Isolation and characterization of an acetylene-resistant nitrogenase. J. Biol. Chem. 275, 11459-11464 https://doi.org/10.1074/jbc.275.15.11459
- Christiansen, J., Seefeldt, L. D. and Dean, D. R. (2000) Competitive substrate and inhibitor interactions at the physiologically relevant active site of nitrogenase. J. Biol. Chem. 275, 36104-36107 https://doi.org/10.1074/jbc.M004889200
- Davis, L. C. and Wang, Y.-L. (1980) In vivo and in vitro kinetics of nitrogenase J. Bacteriol. 141, 1230-1238
- Maskos, Z. and Hales, B. J. (2003) Photo-lability of CO bound to Mo-nitrogenase from Aztobacter vinelandii. J. Inorg. Biochem. 93, 11-17 https://doi.org/10.1016/S0162-0134(02)00480-4
-
McLean, P. A., True, A., Nelson, M. J., Lee, H.-I., Hoffman, B. M. and Orme-Johnson, W. H. (2003) Effects of substrates (methyl isocyanide,
$C_{2}H_{2}$ ) and inhibitor (CO) on resting-state wild-type and NifV-Klebsiella pneumoniae MoFe proteins. J. Inorg. Biochem. 93, 18-32 https://doi.org/10.1016/S0162-0134(02)00580-9 -
Han, J. and Newton, W. E. (2004) Differentiation of acetylenereduction sites by stereoselective proton addition during Azotobacter vinelandii nitrogenase-catalyzed
$C_{2}D_{2}$ reduction. Biochemistry 43, 2947-2956 https://doi.org/10.1021/bi035247y - Durrant, M. C. (2004) An atomic level model for the interactions of molybdenum nitrogenase with carbon monoxide, acetylene, and ethylene. Biochemistry 43, 6030-6042 https://doi.org/10.1021/bi036300l
- Dance, I. (2004) The mechanism of nitrogenase. Computed details of the site and geometry of binding of alkyne and alkene substrates and intermediates. J. Am. Chem. Soc. 126, 11852-11863 https://doi.org/10.1021/ja0481070
- Thorneley, R. N. F. and Lowe, D. J. (1985) In Molybdenum Enzymes; Spiro, T. G., Ed.; Wiley-Interscience: New York, p 221
- Smith, B. E., Durrant, M. C., Fairhurst, S. A., Gormal, C. A., Gronberg, K. L. C., Henderson, R. A., Ibrahim, S. K., Le Gall, T. and Pickett, C. J. (1999) Exploring the reactivity of the isolated iron-molybdenum cofactor of nitrogenase. Coord. Chem. Rev. 185-186, 669-687
- Dos Santos, P. C., Igarashi, R. Y., Lee, H.-I., Hoffman, B. M., Seefeldt, L. C. and Dean, D. R. (2005) Substrate interactions with the nitrogenase active site. Acc. Chem. Res. 38, 208-214 https://doi.org/10.1021/ar040050z
- Lee, H.-I., Igarashi, R. Y., Laryukhin, M., Doan, P. E., Dos Santos, P. C., Dean, D. R., Seefeldt, L. C. and Hoffman, B. M. (2004) An organometallic intermediate during alkyne reduction by nitrogenase. J. Am. Chem. Soc. 126, 9563-9569 https://doi.org/10.1021/ja048714n
-
Sellman, D., Fursattel, A. and Sutter, J. (2000) The nitrogenase catalyzed
$N_2$ dependent HD formation: a model reaction and its significance for the FeMoco function. Coord. Chem. Rev. 200, 545-561 https://doi.org/10.1016/S0010-8545(99)00240-4 - Durrant, M. C. (2001) Controlled protonation of ironmolybdenum cofactor by nitrogenases: a structural and theoretical analysis. Biochem. J. 355, 569-576
-
Han, J. and Coucouvanis, D. (2005) Synthesis and structure of the Organometallic
$MFe_{2}$ $({\mu}_{3}-S)_2$ clusters (M = Mo or Fe) Dalton Trans. 1234-1240 -
Nava, P., Han, J., Ahlrichs, R. and Coucouvanis, D. (2004) An evaluation by density functional theory of M-M interactions in organometallic clusters with the
$[Fe_3MoS_3]^{2+}$ cores. Inorg. Chem. 43, 3225-3229. https://doi.org/10.1021/ic0499392 - Coucouvanis, D., Han, J., Ahlrichs, R., Nava, P. and Huniar, U. (2003) Density functional theory calculations on the nitrogenase cofactor and synthetic analogs. J. Inorg. Biochem. 96, 19-19
-
Coucouvanis, D., Han, J. and Moon, N. (2002) Synthesis and characterization of sulfur-voided cubanes. Structural analogs for the
$MoFe_{3}S_{3}$ subunit in the nitrogenase cofactor. J. Am. Chem. Soc. 124, 216-224 https://doi.org/10.1021/ja0110832 -
Han, J., Beck, K., Ockwig, N. and Coucouvanis, D. (1999) Synthetic analogs for the
$MoFe_{3}S_{3}$ subunit of the nitrogenase cofactor: Structural features associated with the total number of valence electrons and the possible role of M-M and multiple M-S bonding in the function of Nitrogenase. J. Am. Chem. Soc. 121, 10448-10449 https://doi.org/10.1021/ja991880o - Rao, P. V. and Holm, R. H. (2004) Synthetic analogues of the active sites of iron-sulfur proteins. Chem. Rev. 104, 527-559 https://doi.org/10.1021/cr020615+
- Lee, S. C. and Holm, R. H. (2004) The clusters of nitrogenase: Synthetic methodology in the construction of weak-field clusters. Chem. Rev. 104, 1135-1157 https://doi.org/10.1021/cr0206216
- Zhang, Y. and Holm, R. H. (2004) Structural conversions of molybdenum-iron-sulfur edge-bridged double cubanes and PN- type clusters topologically related to the nitrogenase Pcluster. Inorg. Chem. 43, 674-682 https://doi.org/10.1021/ic030259t
- Lee, S. C. and Holm, R. H. (2003) Speculative synthetic chemistry and the nitrogenase problem. Proc. Nat'l. Acad. Sci. USA 100, 3595-3600
- Although 1Mo4+, 1Fe3+, 6Fe3+ model was suggested by ENDOR spectroscopic study, Yoo, et al's result is recently more supported.
- Yoo, S. J., Angove, H. C., Papaethymiou, V., Burgess, B. K. and Munck, E. (2000) Mössbauer study of the MoFe protein of nitrogenase from Azotobacter vinelandii using selective Fe- 57 enrichment of the M-centers. J. Am. Chem. Soc. 122, 4926-4936 https://doi.org/10.1021/ja000254k
- Hinnemann, B. and Norskov, J. K. (2003) Modeling a central ligand in the nitrogenase FeMo cofactor. J. Am. Chem. Soc. 125, 1466-1467 https://doi.org/10.1021/ja029041g
- Lee, H.-I., Benton, P. M. C., Laryukhin, M., Igarashi, R. Y., Dean, D. R., Seefeldt, L. C. and Hoffman, B. M. (2003) The interstitial atom of the nitrogenase FeMo-cofactor: ENDOR and ESEEM show it is not an exchangeable nitrogen. J. Am. Chem. Soc. 125, 5604-5605 https://doi.org/10.1021/ja034383n
- The distances are very short, considering hydrogen atoms are bonded to the amino acid residues
- It is reported recently that the atom inside FeMo-cofactor may not be nitrogen atom. Yang, T.-C., Maeser, N. K., Laryukhin, M., Lee, H.-I., Dean, D. R., Seefeldt, L. C. and Hoffman, B. M. (2005) The interstitial atom of the nitrogenase FeMocofactor: ENDOR and ESEEM evidence that it is not a nitrogen. J. Am. Chem. Soc. ASAP ja0552489