Review of Microbially Mediated Smectite-illite Reaction

생지화학적 스멕타이트-일라이트 반응에 관한 고찰

  • 김진욱 (연세대학교 지구시스템과학과)
  • Published : 2009.10.28

Abstract

The smectite-illite (SI) reaction is a ubiquitous process in siliciclastic sedimentary environments. For the last 4 decades the importance of smectite to illite (S-I) reaction was described in research papers and reports, as the degree of the (S-I) reaction, termed "smectite illitization", is linked to the exploration of hydrocarbons, and geochemical/petrophysical indicators. The S-I transformation has been thought that the reaction, explained either by layer-by-layer mechanism in the solid state or dissolution/reprecipitation process, was entirely abiotic and to require burial, heat, and time to proceed, however few studies have taken into account the bacterial activity. Recent laboratory studies showed evidence suggesting that the structural ferric iron (Fe(III)) in clay minerals can be reduced by microbial activity and the role of microorganisms is to link organic matter oxidation to metal reduction, resulting in the S-I transformation. In abiotic systems, elevated temperatures are typically used in laboratory experiments to accelerate the smectite to illite reaction in order to compensate for a long geological time in nature. However, in biotic systems, bacteria may catalyze the reaction and elevated temperature or prolonged time may not be necessary. Despite the important role of microbe in S-I reaction, factors that control the reaction mechanism are not clearly addressed yet. This paper, therefore, overviews the current status of microbially mediated smectite-to-illite reaction studies and characterization techniques.

스멕타이트-일라이트 (SI)의 전이 반응은 쇄설성 퇴적암 지역에 흔히 볼 수 있는 광물 반응이다. 지난 40여년 동안 SI 전이 반응의 중요성에 대한 논문들이 많이 출간되었는데 이는 스멕타이트가 일라이트로 변하는 정도 즉 "illitization" 이 석유의 개발, 퇴적물의 화학적 변화 및 물리적 성질변화 에 많은 연계성이 있기 때문이다. 기존의 S-I 상전이에 대한 메커니즘 연구에서는 layer-by-layer reaction 에 의한 solid state 반응 혹은 dissolution/precipitation 반응으로 집약되지만 박테리아 반응의 역할을 전혀 고려하지 않았다. 무산소 환경에서 박테리아와 점토광물의 반응에 대한 연구, 특히 스멕타이트와 철 환원 박테리아의 반응 작용에 대한 연구에서는 철 환원 박테리아가 스멕타이트 구조 속에 있는 철을 환원시켜 에너지를 얻는다고 밝혀졌다. 최근 발표된 논문들은 미생물의 철 환원 작용에 의하여 S-I 상전이가 일어날 수 있다고 보고되었는데, 이는 기존의 상전이에 대한 개념에 즉 고온, 고압, 오랜 시간이 S-I 전이의 필수 조건이라는 일반적인 해석에 반하는 것으로 새로운 연구 분야의 가능성을 시사하고 있다. 현재까지 발표된 논문에 의하면 박테리아가 S-I 반응을 촉진지킴으로 고온, 고압, 혹은 상당시간의 속성작용이 전제조건으로 작용하지 않을 수 있다는 가능성을 시사한다. 하지만 박테리아가 철을 환원함과 동시에 스멕타이트를 일라이트로 전이시킴에 있어서의 메커니즘에 대한 이해는 아직 미비하다. 따라서 이 논문에서는 현재까지 밝혀진 SI 반응을 살펴보고, 미생물 광물간의 반응작용에 있어서 연구 방법을 소개함을 목적으로 한다.

Keywords

References

  1. Bethke, C.M. and Altaner, S.P. (1986) Layer-by-layer mechanism of smectite illitization and application to a new rate law. Clays & Clay Mineral, v.34, p.136-145 https://doi.org/10.1346/CCMN.1986.0340204
  2. Boles, J.R. and Franks, S.G. (1979) Clay diagenesis in Wilcox sandstones of southwest Texas. Journal of Sedimentary Research, v.49, p.55-70
  3. Brown, K.M., Saffer, D.M. and Bekins, B.A. (2001) Smectite diagenesis, pore-water freshening, and fluid flow at the toe of the Nankai wedge. Earth and Planetary Science Letters, v.194, p.97-109 https://doi.org/10.1016/S0012-821X(01)00546-5
  4. Dong, H., Peacor, D.R. and Freed, R.L. (1997) Phase relations among smectite, R1 illite-smectite, and illite. American Mineralogist, v.82, p.379-391
  5. Dong, H., Kostka, J.E. and Kim, J.W. (2003) Microscopic evidence for microbial dissolution of smectite. Clays and Clay Minerals, v.51, p.502-512 https://doi.org/10.1346/CCMN.2003.0510504
  6. Eberl, D.D., Drits, V.A. and Srodon, J. (1998) Deducing growth mechanisms for minerals from the shapes of crystal size distributions. American Journal of Science, v.298, p.499-533
  7. Eslinger, E., Highsmith, P., Albers, D. and deMayo, B. (1979) Role of iron reduction in the conversion of smectite to illite in bentonites in the Disturbed Belt, Montana. Clays & Clay Minerals, v.27, p.327-338 https://doi.org/10.1346/CCMN.1979.0270503
  8. Freed, R.L. and Peacor, D.R. (1989) Geopressured shale and sealing effect of smectite to illite transition. AAPG Bull, v.73, p.1223-1232
  9. Furukawa, Y. and O'Reilly, S.E. (2007) Rapid precipitation of amorphous silica in experimental systems with nontronite (NAu-1) and Shewaella oneidensis MR-1. Ceochimica et Cosmochimica Acta, v.71, p.363-377 https://doi.org/10.1016/j.gca.2006.09.006
  10. Huang, W.L., Longo, J.M. and Pevear, D.R. (1993) An experimentally derived kinetic model for smectite-toillite conversion and its use as a geothermometer. Clays & Clay Minerals, v.41, p.162-177 https://doi.org/10.1346/CCMN.1993.0410205
  11. Jaisi, D.P., Dong, H. and Liu, C. (2007) Influence of biogenic Fe(II) on the extent of microbial reduction of Fe(III) in clay minerals nontronite, illite, and chlorite. Geochimica et Cosmochimica Acta, v.71, p.1145-1158 https://doi.org/10.1016/j.gca.2006.11.027
  12. Jaisi, D.P., Dong, H. and Morton, J.P. (2008) Partitioning of Fe(II) in reduced nontronite (NAu-2) to reactive sites: Reactivity in terms of Tc(VII) Reduction. Clays and Clay Minerals, 56(2), 175-189 https://doi.org/10.1346/CCMN.2008.0560204
  13. Jaisi, D.P., Dong, H., Plymale, A.E., Fredrickson, J.K., Zachara, J.M., Heald, S. and Liu, C. (2009) Reduction and long-term immobilization of technetium by Fe(II) associated with clay mineral nontronite. Chemical Geology, v.264, p.127-138 https://doi.org/10.1016/j.chemgeo.2009.02.018
  14. Kim, J.W., Furukawa, Y., Daulton, T.L., Lavoie, D. and Newell, S.W. (2003) Characterization of microbially Fe (III)-reduced nontronite: environmental cell-transmission electron microscopy study. Clays & Clay Minerals, v.51, p.382-389 https://doi.org/10.1346/CCMN.2003.0510403
  15. Kim, J.W., Dong, H., Seabaugh, J., Newell, S.W. and Eberl, D.D. (2004) Role of microbes in the smectite-to-illite reaction. Science, v.303(5659), p.830-832
  16. Kim, J.W., Furukawa, Y., Dong, H. and Newell, S.W. (2005) The effect of microbial Fe(III) reduction in the clay flocculation. Clays & Clay Minerals, v.53, p.572-579 https://doi.org/10.1346/CCMN.2005.0530603
  17. Kim, J.W. and Dong, H (2009 in review) Characterization of mineral transformation associated with microbial reduction of magnetite by electron energy loss spectroscopy (EELS) and energy filtered transmission electron microscopy (EFTEM). American Mineralogist
  18. Kostka, J.E., Dalton, D.D., Skelton, H., Dollhopf, S. and Stuki, J.W. (2002) Growth of Iron(III)-Reducing Bacteria on Clay Minerals as the Sole Electron Acceptor and Comparison of Growth Yields on a Variety of Oxidized Iron Forms. Applied and Environmental Microbiology, v.68, p.6256-6262 https://doi.org/10.1128/AEM.68.12.6256-6262.2002
  19. Lee, K.W., Kostka, J.E. and Stuki, J.W. (2006) Comparisons of stuructural Fe Reduction in smectites by bacteria and dithionite: An infrared spectroscopic study. Clays & Clay Minerals, v.54, p.195-208 https://doi.org/10.1346/CCMN.2006.0540205
  20. Moor, D. M. and Reynolds, R. C. (1997) X-ray diffraction and the identification and analysis of clay minerals. Oxford University Press, NY
  21. Pevear, D.R. (1999) Illite and hydrocarbon exploration. Proceedings of the National Academy of Sciences of the United States of America, v.96, p.3440-3446? https://doi.org/10.1073/pnas.96.7.3440
  22. Pollastro, R.M. (1993) Considerations and applications of the illite/smectite geothermometer in hydrocarbon-bearing rocks of Miocene to Mississippian age. Clays & Clays Minerals, v.41, p.119-133 https://doi.org/10.1346/CCMN.1993.0410202
  23. Prowe, S.G. and Antranikian, G. (2001) Anaerobranca gottschalkii sp. nov., a novel thermoalkaliphilic bacterium that grows anaerobically at high pH and temperature. International Journal of Systematic and Evolutionary Microbiology, v.51, p.457-465
  24. Russell, J.D., Goodman, B.A. and Fraser, A.R. (1979) Infrared and Mssbauer studies of reduced nontronite. Clays & Clay Mineral, v.27, p.63-71 https://doi.org/10.1346/CCMN.1979.0270108
  25. Stucki, J.W. and Getty, P.J. (1986) Microbial reduction of iron in nontronite, in: Agronomy Abstracts, Soil Science Society of America, Madison, WI, USA, p.279
  26. Stucki, J.W. and Kostka, J.E. (2006) Microbial reduction of iron in smectite. Geoscience, v.338, p.468-475 https://doi.org/10.1016/j.crte.2006.04.010
  27. Zhang, G., Dong, H., Kim, J.W. and Eberl, D.D. (2007a) Microbial reduction of structural $Fe^{3+}$ in nontronite by a thermophilic bacterium and its role in promoting the smectite to illite reaction. American Mineralogist, v.92, p.1411-1419 https://doi.org/10.2138/am.2007.2498
  28. Zhang, G., Kim, J.W., Dong, H. and Sommer, A.J. (2007b) Microbial effects in promoting the smectite to illite reaction: role of organic matter intercalated in the interlayer. American Mineralogist, v.92, p.1401-1410 https://doi.org/10.2138/am.2007.2331