DOI QR코드

DOI QR Code

A Density-Functional Theory Study on Mechanisms of the Electrochemical Nitrogen Reduction Reaction on the Nickel(100) Surface

범밀도함수이론에 기초한 니켈(100) 표면에서의 전기화학적 질소환원반응 메커니즘에 관한 연구

  • Minji Kim (Department of Chemical Engineering and Materials Science, Ewha Womans University) ;
  • Sangheon Lee (Department of Chemical Engineering and Materials Science, Ewha Womans University)
  • 김민지 (이화여자대학교 화공신소재공학과) ;
  • 이상헌 (이화여자대학교 화공신소재공학과)
  • Received : 2023.07.31
  • Accepted : 2023.09.20
  • Published : 2023.11.01

Abstract

The nitrogen reduction reaction (NRR), which produces NH3 by reducing N2 under ambient conditions, is attracting attention as a promising technology that can reduce energy consumption in industrial processes. We investigated the adsorption behaviors at various active sites on the Ni (100) surface, which is widely used among catalytic metal surfaces capable of adsorbing and activating N2, based on density-functional theory calculations. We also investigated two N2 adsorption structures, so-called end-on and side-on structures. We find that for the end-on case, N2 is adsorbed on a top site, and the reaction proceeded in a distal pathway, while for the side-on case, N2 is adsorbed on a bridge site, and the reaction proceeded with enzymatic pathway. Finally, this study provides insight into the adsorption of metal catalyst surfaces for the NRR reactions based on the calculated Gibbs free energy profiles of the thermodynamically most favorable pathways.

주변 조건에서 N2를 환원하여 NH3를 생성하는 전기 촉매 질소 환원 반응(nitrogen reduction reaction, NRR)은 산업공정에서 에너지 소비를 감소시킬 수 있는 유망한 기술로 주목을 받고 있다. N2를 흡착하고 활성화할 수 있는 촉매 금속 표면 중 많이 사용되는 Ni(100) 표면의 여러 사이트(site)의 흡착 성능을 밀도 함수 이론 계산(density-functional theory)를 기반으로 비교하였다. 또한 안정적인 NRR반응의 경로를 유도하는 N2의 두 가지 흡착 구조를 조사하였고 end-on 구조는 top site에 흡착, distal pathway로 반응이 진행되고 side-on 구조는 bridge site에 흡착되며 enzymatic pathway로 반응이 진행되었다. 마지막으로 구조 별 가장 안정한 메커니즘의 깁스 자유에너지를 구하여 반응의 경향성을 알아봄으로써 NRR 반응의 금속 촉매 표면 흡착에 대한 연구에 도움이 될 수 있을 것이다.

Keywords

Acknowledgement

본 연구는 한국연구재단 동북아-지역 연계 초미세먼지 대응 기술개발 사업(과제번호: 2020M3G1A1114617)의 재정 지원으로 수행되었다.

References

  1. Song, Wei. Peng, Weichao and Ma, Pengfei, "Density Functional Theory Study of N2 Adsorption and Dissociation on 3d Transition Metal Atoms Doped Ir (100) Surface," Appl. Surf. Sci. 597, 153678(2022).
  2. Ma, D., Zeng, Z. and Liu, L., "Computational Evaluation of Electrocatalytic Nitrogen Reduction on TM Single-, Double-, and Triple-atom Catalysts (TM=Mn, Fe, Co, Ni) Based on Graphdiyne Monolayers," J. Phys. Chem. C., 123(31), 19066-19076(2019). https://doi.org/10.1021/acs.jpcc.9b05250
  3. Xue, C., Zhou, X. and Li, X., "Rational Synthesis and Regulation of Hollow Structural Materials for Electrocatalytic Nitrogen Reduction Reaction," Adv. Sci., 9(1), 2104183(2022).
  4. Kresse, G. and Furthmuller, J., "Efficient Iterative Schemes Forab Initiototal-energy Calculations Using a Plane-wave Basis Set," Phy. Rev. B, 54, 11169-11186(1996). https://doi.org/10.1103/PhysRevB.54.11169
  5. Wang, K., Li, K. and Wang, F., "Study on the Adsorption Properties and Mechanisms of CO on Nickel Surfaces Based on Density Functional Theory," Energies, 16(1), 525(2023).
  6. Kresse, G. and Hafner, J., "First-principles Study of the Adsorption of Atomic H on Ni(111), (100) and (110)," Surf Sci., 459(3), 287-302(2000). https://doi.org/10.1016/S0039-6028(00)00457-X
  7. Weast, R. C., Handbook of Chemistry and Physics, CRC Press, Florida (1981).
  8. Norskov, J. K., Rossmeisl, J. and Logadottir, A., "Origin of the Overpotential for Oxygen Reduction at a Fuel-cell Cathode," J. Phys. Chem. B, 108(46), 17886-17892(2004). https://doi.org/10.1021/jp047349j
  9. Li, L., Martirez, J. and Carter, E. A., "Prediction of Highly Selective Electrocatalytic Nitrogen Reduction at Low Overpotential on a Mo-doped g-GaN Monolayer," ACS Catal., 10(21), 12841-12857 (2020). https://doi.org/10.1021/acscatal.0c03140
  10. Appel, A. M. and Helm, M. L., "Determining the Overpotential for a Molecular Electrocatalyst," ACS Catal., 4(2), 630-633(2014). https://doi.org/10.1021/cs401013v
  11. Mohsenzadeh, A., Bolton, K. and Richards, T., "DFT Study of the Adsorption and Dissociation of Water on Ni (111), Ni (110) and Ni (100) Surfaces," Surf Sci. Eng., 627, 1-10(2014). https://doi.org/10.1016/j.susc.2014.04.006
  12. Ling, C. Y., Ouyang, Y. X. and Li, Q., "A General Two-Step Strategy-Based High-Throughput Screening of Single Atom Catalysts for Nitrogen Fixation," Small Methods, 3(9), 1800376(2019).
  13. Li, F. and Tang, Q. A., "A Di-boron Pair Doped MoS2 (B2@MoS2) Single-layer Shows Superior Catalytic Performance for Electrochemical Nitrogen Activation and Reduction," Nanoscale, 11(40), 18769-18778(2019). https://doi.org/10.1039/C9NR06469A
  14. Ye, K. Hu, M. and Li, Q.-K., "Cooperative Single-atom Active Centers for Attenuating the Linear Scaling Effect in the Nitrogen Reduction Reaction," J. Phys. Chem. Lett., 12(22), 5233-5240(2021). https://doi.org/10.1021/acs.jpclett.1c01307
  15. Choi, C., Gu, G. H. and Noh, J., "Understanding Potential-dependent Competition Between Electrocatalytic Dinitrogen and Proton Reduction Reactions," Nat. Commun., 12(1), 4353(2021).
  16. Kim, S.-H., Song, H. C. and Ham, H. C., "Impact of the Dopant-induced Ensemble Structure of Hetero-double Atom Catalysts in Electrochemical NH3 Production," J. Mater. Chem. A., 10(11), 6216-6230(2022). https://doi.org/10.1039/D1TA08358A