• Title/Summary/Keyword: 해저열수광상

Search Result 17, Processing Time 0.019 seconds

Strategies for Development of Seafloor Polymetallic Sulphides in Consideration of International Progress (해저열수광상 개발동향과 우리나라의 대응방안)

  • Park, Seong-Wook;Yang, Hee-Cheol;Jeong, Hyeong-Su
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.13 no.3
    • /
    • pp.271-279
    • /
    • 2008
  • Polymetallic sulphides means hydrothermally formed deposits of sulphide minerals which contain concentrations of metals including, inter alia, copper, lead, zinc, gold and silver. Nautilus is the first company to commercially explore the seafloor polymetallic sulphide deposits. The Company holds exploration licences and exploration applications for more than 370,000 $km^2$ in the jurisdictional seas of Papua New Guinea, Fiji, Tonga, the Solomon Islands and New Zealand along the western Pacific Ocean's Rim of Fire. Neptune Minerals is also a leading explorer and developer in this field, with exploration licences awarded totalling more than 270,000 $km^2$ in the territorial seas or EEZ of New Zealand, Papua New Guinea and the Federated States of Micronesia. These two companies now carry out the most active investment activities for seafloor polymetallic sulphide deposits with a goal of commercial production by 2010. China and Japan carry out exploration activities for the seafloor polymetallic sulphide deposits to secure supplies of strategic metals. China carries out national R&D projects relating to deep sea mineral resources in the world ocean through China Ocean Mineral Resources R&D Association(COMRA). And Japan investigates her own EEZ for exploration of the seafloor polymetallic sulphide deposits. In consideration of aforementioned international activities of coastal nations as well as private companies for exploring the sulphide deposits, Korea shall prepare strategic plans : First, consolidation of the authorities concerned and legislative support; second, determination of main entity of the project; third, securing government's decisive investment of sufficient budget; and lastly, establishment of the mid, long-term plan for development of seafloor polymetallic sulphides deposits.

Hydrothermal Alteration Around the TA 26 Seamounts of the Tofua Volcanic Arc in Lau Basin, Tonga (통가국 라우분지 TA 26 해저산의 열수변질작용)

  • Cho, Hyen Goo;Kim, Young-Ho;Um, In Kwon;Choi, Hunsoo
    • Journal of the Mineralogical Society of Korea
    • /
    • v.25 no.4
    • /
    • pp.233-247
    • /
    • 2012
  • We have researched the distribution and characteristics of seafloor hydrothermal deposits for the development of economic mineral deposits in the Lau Basin, Tonga since 2009. In this study, we interpreted hydrothermal alteration around TA 26 seamounts of the Tofua volcanic arc using X-ray diffraction analysis for bulk sample and preferred-oriented specimen of clay fraction. We used 2 core samples and several surface samples. Plagioclase and quartz are dominant mineral in the basement rock, whereas kaolin mineral and smectite are superior in marine surface sediments. Especially sulfate and sulfide minerals such as gypsum, barite, sphalerite, and pyrite are predominant in the vent sediments. When we compare the mineral composition between basement rock and sea surface sediments, argillic alteration zone composed of kaolin mineral and smectite could be produced by hydrothermal fluids. Based on the downcore variation of mineral assemblages, most portion of MC08H-06 core could be interpreted as argillic alteration zone composed of kaolin mineral and smectite except top 2 cm area. Various sulfate or sulfide minerals and argillic alteration zone suggest a high probability of massive sulfide deposits in the seafloor of the TA 26 seamount.

A Review on Mineralogical and Geochemical Characteristics of Seafloor Massive Sulfide Deposits in Mid-Ocean Ridge and Volcanic Arc Settings: Water-Rock Interaction and Magmatic Contribution (중앙해령 및 섭입대 화산호 지역 해저열수광상의 광물·지구화학적 특성 고찰: 물-암석 상호작용 및 마그마 영향)

  • Choi, Sun Ki
    • Economic and Environmental Geology
    • /
    • v.55 no.5
    • /
    • pp.465-475
    • /
    • 2022
  • The seafloor massive sulfide deposits are important mineral resources for base and precious metals, and their ore genesis and metal contents are mainly controlled by wall-rock leaching process and/or magmatic volatile input from the underlying magma chamber. However, the contribution of two different metal sources to the seafloor hydrothermal mineralization significantly varies in diverse geological settings and thus still remains controversial. In this review, mineralogical and geochemical characteristics of SMS deposits from mid-ocean ridges (MORs) and volcanic arcs were investigated to understand the contribution from different metal sources and to suggest future challenges that need to be addressed. As a result, the genetic occurrences of enargite and cubanite, galena and barite indicate the effects of magmatic input and water-rock interaction, respectively. Also, the distributional behaviors of Co, As, and Hg in pyrite and FeS content of sphalerite could be useful empirical indicators to discriminate the significant roles of different metal sources between MOR and Arc settings. To date, as most studies have focused on sulfide samples recovered from the seabed, further studies on magmatic sulfides and sulfate minerals are required to fully understand the genetic history of SMS deposits.

The Prototype Study of Resistivity and Porosity Measurement for the Samples Collected Near Marine Hydrothermal Deposit (해저열수광상 주변 암석 시료의 공극률과 전기비저항 측정 기초실험)

  • Lee, Sang-Kyu;Lee, Seong-Kon
    • Geophysics and Geophysical Exploration
    • /
    • v.13 no.4
    • /
    • pp.378-387
    • /
    • 2010
  • We present the results of laboratory measurement of porosity and electrical resistivity for the samples collected near marine hydrothermal deposit to provide fundamental perspective of physical properties for future electromagnetic survey. The rock cores are sampled from the host rock, pumice, hydrothermal altered zone, and chimney. These samples are featured as easily brittle, rough surface with large pores, having components easily solvable in the water. We suggest systematic approach for measuring weights, volumes of core samples to calculate density and porosity. Measurements reveal that the resistivities of black host rock, gray host rock, pumice and chimney are 102, 39, 11, 0.1 ohm-m, respectively, when the core samples are saturated with saline water of $32,000\;{\mu}S$/cm (0.5 ohm-m) at temperature of $2.5^{\circ}C$ and these correspond to the factors of 5 for sea water, 110 for pumice and 390~1020 for host rocks with respect to the resistivity of chimney. We also confirm that resistivity of rock samples saturated with water decrease with temperature linearly over the temperature range of $20{\sim}80^{\circ}C$.

The Exploration Methodology of Seafloor Massive Sulfide Deposit by Use of Marine Geophysical Investigation (해양 지구물리 탐사를 이용한 해저열수광상 부존지역 탐지 방법)

  • Kim, Hyun-Sub;Jung, Mee-Sook;Kim, Chang-Hwan;Kim, Jong-Uk;Lee, Kyeong-Yong
    • Geophysics and Geophysical Exploration
    • /
    • v.11 no.3
    • /
    • pp.167-176
    • /
    • 2008
  • Lau basin of the south Pacific, as an active back arc basin, is promising area bearing seafloor massive hydrothermal deposit that is located in a subduction zone between the Pacific ocean plate and Indo-Australian continental plate. We performed multi-beam bathymetry survey in the Lau basin using EM120, to find out high hydrothermal activity Bone. Fonualei Rift and Spreading Center (FRSC) and Mangatolou Triple Junction (MTJ) area were selected for precise site survey through seafloor morphology investigation. The result of surface and deep-tow magnetometer survey showed that Central Anomaly Magnetization High (CAMH) recorded which is associated with active ridge in FRSC-2 and revealed very low magnetic anomalies that can be connected to past or present high hydrothermal activity in MTJ-1 seamount area. Moreover, the physical and chemical tracers of hydrothermal vent flume, i.e., transmission, hydrogen ion concentration (pH), adenosine triphosphate (ATP), methane (CH4) by use of CTD system, showed significant anomalies in those areas. From positive vent flume results, we could conclude that these areas were or are experiencing very active volcanic activities. The acquired chimney and hydrothermal altered bed rock samples gave us confidence of the existence of massive hydrothermal deposit. Even though not to use visual exploration equipment such as ROV, DTSSS, etc., traditional marine geophysical investigation approach might be a truly cost-effective tool for exploring seafloor hydrothermal massive deposit.

Driving Performance Simulation of Mining Robot for SMS deposits (해저열수광상 채광 로봇의 해저면 주행성능 시뮬레이션)

  • Lee, Chang-Ho;Kim, Hyung-Woo;Hong, Sup;Kim, Sung-Soo
    • Journal of Ocean Engineering and Technology
    • /
    • v.27 no.2
    • /
    • pp.80-86
    • /
    • 2013
  • KIOST developed a deep-sea mining robot called "MineRo" to collect manganese nodules in 2007. MineRo operates on flat ground. SMS (seafloor massive sulfide) deposits are shaped like undulating mountains. This paper deals with a numerical analysis model of a mining robot for SMS deposits. The mining robot consists of a tracked vehicle, chassis structure with a turntable, boom arm with 2 articulations, excavation tool, discharging unit, hydro-electric system, and sensing-and-monitoring system. In order to compare and analyze the dynamic responses of the driving mechanism, various tracked vehicles are modeled using commercial software. Straight driving simulations are conducted under undulating ground conditions. A conceptual design of a mining robot with four track systems for SMS deposits is modeled on the basis of these results.

Chemical Characteristics for Hydrothermal Alteration of Surface Sediments from Submarine Volcanoes of the Tonga Arc (통가열도 해저화산 표층 퇴적물 내 열수변질의 화학적 특성)

  • Um, In Kwon;Chun, Jong-Hwa;Choi, Hunsoo;Choi, Man Sik
    • Journal of the Mineralogical Society of Korea
    • /
    • v.26 no.4
    • /
    • pp.245-262
    • /
    • 2013
  • We analyzed 29 surface sediment samples in five submarine volcanoes (TA12, TA19, TA22, TA25, and TA26) located in the southern part of the Tonga arc for trace elements and rare earth elements to investigate characteristics of the hydrothermal alteration of surface sediments. Based on analytical results of trace element and rare earth element (REE), surface sediments of TA12, TA19, and TA22 submarine volcanoes, which are located in the northern part of the study area, were very little or not influenced by hydrothermal fluids. In contrast, some stations of TA25 and TA26 submarine volcanoes were strongly affected by hydrothermal fluids. However, these two submarine volcanoes showed different features in element concentration in the sediments. Some stations of TA25 submarine volcano showed enrichment of Ni, Cu, Sn, Zn, Pb, Cr, Cd, Sb, W, Ba, Ta, Rb, Sr, and As, however, those of TA26 submarine volcano showed enrichment of Sn, Zn, Pb, Cd, Sb, Ba, Rb, and Sr. Stations which enriched trace elements were observed, enriched REEs were also observed. Average upper continental crust (UCC)-normalized REE patterns of the surface sediments generally showed low light REE (LREE) abundances and increased heavy REE (HREE) abundances. Eu enrichment was identified at several stations of TA25 and TA26 submarine volcanoes. In addition, enrichment of Ce was found at some stations of TA26 submarine volcano and these enrichment patterns were similar with hydrothermal fluid of near stations. Furthermore, TA25 and TA26 submarine volcanoes showed different enrichment characteristics of trace elements and REE. Trace elements were concentrated at TA25 submarine volcano. TA26 submarine volcano, on the other hand, observed highly enrichment of REE especially, Eu and Ce. As a result of the investigation, the characteristics and concentrations of REEs and trace elements in the surface sediments of each submarine volcano can be applied to identify hydrothermal alteration of sediments during exploration for hydrothermal deposits.

Hydrothermal Alteration around the Tofua Arc (TA) 25 Seamounts in Tonga Arc (통가열도 TA 25 해저산의 열수변질)

  • Cho, Hyen Goo;Kim, Dong-Ho;Koo, Hyo Jin;Um, In Kwon;Choi, Hunsoo
    • Journal of the Mineralogical Society of Korea
    • /
    • v.27 no.4
    • /
    • pp.169-181
    • /
    • 2014
  • Korea government has consistently investigated the development of economic mineral deposits in the Tofua volcanic arc, Tonga since 2008 for the secure of sea floor mineral resources. We studied the composition and distribution of minerals formed by hydrothermal activity around TA 25 seamounts of the Tofua volcanic arc, Lau Basin, Tonga, using X-ray diffraction analysis, scanning electron microscopy, X-ray fluorescence spectrometry, and inductively coupled plasma atomic emission spectrometry. We used 7 core samples and 9 surface sediment samples. Barite, sphalerite, and clinoclase are present in the most volcanic vent area. Gypsum, smectite, and kaolin mineral are distributed in vent A area, chalcopyrite, pyrite, smectite, and kaolin mineral are in vent B and C area, and gypsum, chalcopyrite, pyrite, and goethite are in vent D area. From the study of clay fraction, smectite and few kaolinite are detected in the most studied area except inner part of caldera, which suggest that argillic alteration are dominant in the volcanic vent areas. Various sulfide or arsenide minerals were found in the hydrothermal vent B, C, and D. The mineralogy and geochemistry suggest higher hydrothermal activities in volcanic vent B, C, and D compared to vent A and inner caldera area. Therefore higher probabilities of massive sulfide deposits may occur in hydrothermal vent B, C, and D.

A Study on the Considerations Relating to the Regulations for Prospecting and Exploration for Hydrothermal Polymetallic Sulphides and Cobalt-rich Ferromanganese Crusts in the Area (해저 열수광상 및 망간각 자원 개발을 위한 국제적 논의에 대한 고찰)

  • Park, Seong-Wook;Lee, Yong-Hee;Kwon, Moon-Sang
    • Ocean and Polar Research
    • /
    • v.25 no.2
    • /
    • pp.227-235
    • /
    • 2003
  • In August 1998, during the resumed fourth session of the Authority, the delegation of the Russian Federation reminded the Assembly that, in addition to polymetallic nodules, other mineral resources existed in the Area, including polymetallic sulphides and cobalt crusts, and requested the Authority to adopt rules, regulations and procedures for exploration for such resources. Pursuant to article 162, para. 2(o)(ii), of the 1982 UNCLOS, such rules, regulations and procedures are to be adopted within three years of the date of such a request. This article reviewed the 'Draft Rules and Regulations for the Exploration and Exploitation of Sea-Floor Massive Sulphides and Cobat-rich Ferromanganese Crusts in the Area' by ISA in 2001, and the 'Madang Guideline for Offshore Mineral Policy' written in 1999 in respect of the international trends of polymetallic sulphides and cobalt crusts. Issues for size of mining area and relinquishment, application of the site-banking system, procedure for dealing with overlapping claims and precautionary approach etc. for the establishment of the norm of polymetallic sulphides and cobalt crusts are reviewed as consideration factors.

Development of Technical and Economic Evaluation Model for Seafloor Massive Sulfide Deposits (해저열수광상 기술.경제성평가 모델 개발)

  • Park, Se-Hun;Park, Seong-Wook;Kwon, Suk-Jae
    • Ocean and Polar Research
    • /
    • v.28 no.2
    • /
    • pp.187-199
    • /
    • 2006
  • The Kuroko-type seafloor massive sulfide deposits found in the western Pacific have been considered to have potentials for economic recovery of Au, Ag, Cu, Zn, and Pb. In this study, a preliminary model was developed for the technical and economic evaluation of them. The FRSC site on Lau Basin in the Tonga EEZ was selected as a target. In this study, no construction In for the metallurgical processing subsystem was accounted for. Instead, it was assumed to sell the Cu, Zn, and Pb concentrates to the existing sulfide customer smelter. The low total investment costs for the development make the venture very attractive. However, the result of the economic feasibility evaluation is still less attractive with the mean metal yield of the Kuroko on land. It is considered that commercial mining may be plausible if the richer metal yields are applied to the development. Quantitative information for metal yield is necessary for a more accurate evaluation. However, the important resource potential information regarding the amount of ore body, the inside structure, and the metal yields have not yet been clarified sufficiently. h addition, the flotation of ore body using seawater has not been tested yet. It is necessary to solve these problems through the experimental R&D and a survey.