DOI QR코드

DOI QR Code

Hydrothermal Alteration around the Tofua Arc (TA) 25 Seamounts in Tonga Arc

통가열도 TA 25 해저산의 열수변질

  • Cho, Hyen Goo (Department of Earth and Environmental Sciences and Research Institute of Natural Science, Gyeongsang National University) ;
  • Kim, Dong-Ho (Department of Earth and Environmental Sciences and Research Institute of Natural Science, Gyeongsang National University) ;
  • Koo, Hyo Jin (Department of Earth and Environmental Sciences and Research Institute of Natural Science, Gyeongsang National University) ;
  • Um, In Kwon (Petroleum and Marine Research Division, Korea Institute of Geoscience and Mineral Resources) ;
  • Choi, Hunsoo (Petroleum and Marine Research Division, Korea Institute of Geoscience and Mineral Resources)
  • 조현구 (경상대학교 지구환경과학과 및 기초과학연구소) ;
  • 김동호 (경상대학교 지구환경과학과 및 기초과학연구소) ;
  • 구효진 (경상대학교 지구환경과학과 및 기초과학연구소) ;
  • 엄인권 (한국지질자원연구원 석유해저연구본부) ;
  • 최헌수 (한국지질자원연구원 석유해저연구본부)
  • Received : 2014.05.19
  • Accepted : 2014.11.27
  • Published : 2014.12.30

Abstract

Korea government has consistently investigated the development of economic mineral deposits in the Tofua volcanic arc, Tonga since 2008 for the secure of sea floor mineral resources. We studied the composition and distribution of minerals formed by hydrothermal activity around TA 25 seamounts of the Tofua volcanic arc, Lau Basin, Tonga, using X-ray diffraction analysis, scanning electron microscopy, X-ray fluorescence spectrometry, and inductively coupled plasma atomic emission spectrometry. We used 7 core samples and 9 surface sediment samples. Barite, sphalerite, and clinoclase are present in the most volcanic vent area. Gypsum, smectite, and kaolin mineral are distributed in vent A area, chalcopyrite, pyrite, smectite, and kaolin mineral are in vent B and C area, and gypsum, chalcopyrite, pyrite, and goethite are in vent D area. From the study of clay fraction, smectite and few kaolinite are detected in the most studied area except inner part of caldera, which suggest that argillic alteration are dominant in the volcanic vent areas. Various sulfide or arsenide minerals were found in the hydrothermal vent B, C, and D. The mineralogy and geochemistry suggest higher hydrothermal activities in volcanic vent B, C, and D compared to vent A and inner caldera area. Therefore higher probabilities of massive sulfide deposits may occur in hydrothermal vent B, C, and D.

우리나라는 2008년부터 심해저 광물자원 확보를 위하여 남서태평양 통가국 EEZ 내 Tofua arc의 해저 화산열도에서 해저열수광상에 관한 조사를 지속적으로 수행하고 있다. 통가국 라우분지 TA 25 해저산에서 해저 열수 활동에 의하여 형성된 광물들의 특성과 분포를 규명하기 위하여 X선회절분석, 주사전자현미경 관찰, X선형광분석과 유도결합 플라즈마 방출분광분석을 실시하였다. 연구에 사용된 시료는 TA 25 해저산 주변에서 채취된 7개의 코어 시료와 9개의 해저퇴적물 시료이다. 열수분출구 모든 지역에서 중정석, 섬아연석, 클리노클레이스 등이 존재하고, 열수분출구 A 지역에는 석고, 스멕타이트 및 카올린 광물, 열수분출구 B와 C 지역에는 스멕타이트, 카올린 광물, 황동석과 황철석, 열수분출구 D 지역에는 석고, 황동석, 황철석, 침철석 등이 분포한다. 점토부분에 대한 분석 결과 칼데라 중심부 지역을 제외한 모든 지역에서 스멕타이트와 소량의 카올리나이트가 포함되어 있는 것으로 보아 이질변질작용에 해당하는 열수변질이 있었음을 알 수 있다. 열수분출구 B, C, D 지역은 여러가지 종류의 황화광물과 비소화광물이 존재한다. 광물조성, 주성분과 미량성분 분석 결과로 판단할 때 열수분출구 B, C, D 지역이 비교적 강한 고온의 열수변질작용, 열수분출구 A와 칼데라 중심부 지역은 열수의 영향을 적게 받았거나 저온의 열수변질작용을 받은 것으로 판단된다. 추후 열수광상 탐사는 열수분출구 B, C, D 지역에서 수행되어야 할 것으로 여겨진다.

Keywords

References

  1. Arculus, R.J. (2005) Arc-backarc systems of northern Kermadec-Tonga. New Zealand Minerals Conferences Proceedings, 45-50.
  2. Barnes, H.L. (1979) Geochemistry of Hydrothermal Ore Deposits (2nd ed.). John Wiley & Sons, 798p.
  3. Barrett, T.J., Jarvis, I., Longstaffe, F.J., and Farquhar, R. (1988) Geochemical aspects of hydrothermal sediments in the Eastern Pacific Ocean: An update. Canadian Mineralogis, 26, 841-858.
  4. Cho, H.G., Kim, S.-H., and Yi, H.-Y. (2012a) Clay mineral distribution and characteristics in the southeastern Yellow Sea mud deposits. Journal of Mineralogical Society of Korea, 25(3), 163-173. (in Korean with English abstract) https://doi.org/10.9727/jmsk.2012.25.3.163
  5. Cho, H.G., Kim, Y.-H., Um, I.-K., and Choi, H. (2012b) Hydrothermal alteration around the TA 26 Seamounts of the Tofua Volcanic Arc in Lau Basin, Tonga. Journal of Mineralogical Society of Korea, 25(4), 233-247. (in Korean with English abstract) https://doi.org/10.9727/jmsk.2012.25.4.233
  6. Cole, T.G. (1988) The nature and origin of smectite in the Atlantis II Deep, Red Sea. Canadian Mineralogis, 26, 755-763.
  7. de Ronde, C.E.J., Massoth, G.J., Baker, E.T., and Lupton J.E. (2003) Submarine hydrothermal venting related to volcanic arcs. Economic Geology Special Publication, 10, 91-110.
  8. de Ronde, C.E.J., Hannington, M.D., Stoffers, P., Wright, I.C., Ditchburn, R.G., Reyes, A.G., Baker, E.T., Massoth, G.J., Lupton, J.E., Walker, S.L., Greene, R.R., Soong, C.W.R., Ishibashi, J., Lebon, G.T., Bray, C.J., and Resing, J.A. (2005) Evolution of a submarine magmatic-hydrothermal system: Brothers volcano, southern Kermadec arc, New Zealand. Economic Geology, 100, 1097-1133. https://doi.org/10.2113/gsecongeo.100.6.1097
  9. Giorgetti, G., Monecke, T., Kleeberg, R., and Hannington, M.D. (2009) Low-temperature hydrothermal alteration of trachybasalt at Conical Seamount, Papua New Guinea: Formation of smectite and metastable precursor phases. Clays and Clay Minerals, 57, 725-741. https://doi.org/10.1346/CCMN.2009.0570606
  10. Goodfellow, W.D. and Blaise, B. (1988) Sulfide formation and hydrothermal alteration of hemipelagic sediment in Middle Valley, Northern Juan de Fuca Ridge. Canadian Mineralogis, 26, 675-696.
  11. Guilbert, J.M. and Park, C.F. Jr. (1986) The Geology of Ore Deposits (2nd ed.). W.H. Freeman and Company, 985p.
  12. Hannington, M.D. and Scott, S.D. (1988) Gold and silver potential of polymetallic sulphide deposits on the sea floor. Marine Minerals, 7, 271-282.
  13. Hekinian, R., Muhe, R., Worthington, T.J., and Stoffers, P. (2008) Geology of submarine volcanic caldera in the Tonga Arc: Dive results. Journal of Volcanic and Geothermal Research, 176, 571-582. https://doi.org/10.1016/j.jvolgeores.2008.05.007
  14. Kim, H.S., Jung, M.-S., Kim, C.H., Kim, J., and Lee, K.-Y. (2008) The exploration methodology of seafloor massive sulfide deposit by use of marine geophysical investigation. Mulli-Tamsa, 11(3), 167-176. (in Korean with English Abstract)
  15. KORDI (Korean Ocean Research and Development Institute) (2009) Cruise report on SMST2009 (KODOS09-H). (in Korean)
  16. KORDI (Korean Ocean Research and Development Institute) (2011) Cruise report on SMST2011 (KODOS11-H), 210p. (in Korean)
  17. Koski, R.A., Jonasson, I.R., Kadko, D.C., Smith, V.K., and Wong, F.L. (1994) Compositions, growth mechanisms, and temporal relations of hydrothermal sulfide- sulfate-silica chimneys at the northern Cleft segment, Juan de Fuca Ridge. Journal of Geophysical Research, 99, 4813-4832. https://doi.org/10.1029/93JB02871
  18. Lydon, J.W. (1988) Volcanogenic massive sulphide deposits. Part 2: Genetic models. Geoscience Canada, 15, 43-65.
  19. Massoth, G., Baker, E., Worthington, T., Lupton, J., de Ronde, C., Arculus, R., Walker, S., Nakamura, K., Ishibashi, J., Stoffers, P., Resing, J., Greene, R., and Lebon, G. (2007) Multiple hydrothermal sources along the south Tonga arc and Valu Fa Ridge. Geochemistry, Geophysics and Geosystems. 8(11), 26pp.
  20. Meyer, C. and Hemley, J.J. (1967) Wall rock alteration: In Barnes, H.L. (ed) Geochemistry of Hydrothermal Ore Deposits, Holt, Rinehart and Winston, 166-235.
  21. MTLM (Ministry of Land, Transport and Maritime Affairs) (2009) Report on the development of mineral resources (submarine hydrothermal deposits, manganese crust) in soutwestern Pacific area. I. Exploration. 244p. (in Korean)
  22. Rose, A.W. (1970) Zonal relations of wall rock alteration and sulfide distribution at porphyry copper deposits. Economic Geology, 65, 920-936. https://doi.org/10.2113/gsecongeo.65.8.920
  23. Scott, S.D. (1997) Submarine hydrothermal systems and deposits. In: Barnes, H.L. (ed.) Geochemistry of Hydrothermal Ore Deposits (3rd Ed.), John Wiley, 797-875.
  24. Seyfried, W.E.Jr., Berndt, M.E., and Seewald, J.S. (1988) Hydrothermal alteration processes at Mid-Ocean Ridges: Contraints from diabase alteration experiments, hot-spring fluids and composition of the oceanic crust. Canadian Mineralogis, 26, 787-804.
  25. Stoffers, P., Worthington, T., and the Shipboard Scientific Party (2003) Cruise Report SONNE 167, Louisville Ridge: Dynamics and magmatism of a mantle plume and its influence on the Tonga-Kermadec subduction system: Reports of the Institut fur Geowissenschaften, Universitat Kiel, No. 20, 276p.
  26. Stoffers, P., Worthington, T.J., Schwarz-Schampera, U., Hannington, M., Hekinian, R., Schmidt, M., Lundsten, L.J., Evans, L.J., Vaiomo'unga, R., and Kerby, T. (2006) Submarine volcanoes and high-temperature hydrothermal venting on the Tonga arc, south-west Pacific. Geology, 34, 453-456. https://doi.org/10.1130/G22227.1
  27. Um, I.-K., Chun, J.-H., Choi, H., and Choi, M.S. (2013) Chemical characteristics for hydrothermal alteration of surface sediments from submarine volcanoes of the Tonga Arc. Journal of Mineralogical Society of Korea, 26(4), 245-262. (in Korean with English abstract) https://doi.org/10.9727/jmsk.2013.26.4.245
  28. Usai, A., and Someya, M. (1997) Distribution and composition of marine hydrogenetic and hydrothermal manganese deposits in the north-west Pacific. In: Nicholson, K., Hein, J.R., Buhn, B., and Dasgupta, S. (Eds.), Manganese Mineralization: Geochemistry and Mineralogy of Terrestrial and Marine Deposits, Geological Society of London, vol. 119. Special Publication, 177-198.