The Exploration Methodology of Seafloor Massive Sulfide Deposit by Use of Marine Geophysical Investigation

해양 지구물리 탐사를 이용한 해저열수광상 부존지역 탐지 방법

  • Kim, Hyun-Sub (Deep-sea and Marine Georesources Research Department, Korea Ocean Research and Development Institute) ;
  • Jung, Mee-Sook (Deep-sea and Marine Georesources Research Department, Korea Ocean Research and Development Institute) ;
  • Kim, Chang-Hwan (East Sea Environment Research Department, Korea Ocean Research and Development Institute) ;
  • Kim, Jong-Uk (Deep-sea and Marine Georesources Research Department, Korea Ocean Research and Development Institute) ;
  • Lee, Kyeong-Yong (Deep-sea and Marine Georesources Research Department, Korea Ocean Research and Development Institute)
  • 김현섭 (한국해양연구원 심해.해저자원연구부) ;
  • 정미숙 (한국해양연구원 심해.해저자원연구부) ;
  • 김창환 (한국해양연구원 동해특성연구부) ;
  • 김종욱 (한국해양연구원 심해.해저자원연구부) ;
  • 이경용 (한국해양연구원 심해.해저자원연구부)
  • Published : 2008.08.30

Abstract

Lau basin of the south Pacific, as an active back arc basin, is promising area bearing seafloor massive hydrothermal deposit that is located in a subduction zone between the Pacific ocean plate and Indo-Australian continental plate. We performed multi-beam bathymetry survey in the Lau basin using EM120, to find out high hydrothermal activity Bone. Fonualei Rift and Spreading Center (FRSC) and Mangatolou Triple Junction (MTJ) area were selected for precise site survey through seafloor morphology investigation. The result of surface and deep-tow magnetometer survey showed that Central Anomaly Magnetization High (CAMH) recorded which is associated with active ridge in FRSC-2 and revealed very low magnetic anomalies that can be connected to past or present high hydrothermal activity in MTJ-1 seamount area. Moreover, the physical and chemical tracers of hydrothermal vent flume, i.e., transmission, hydrogen ion concentration (pH), adenosine triphosphate (ATP), methane (CH4) by use of CTD system, showed significant anomalies in those areas. From positive vent flume results, we could conclude that these areas were or are experiencing very active volcanic activities. The acquired chimney and hydrothermal altered bed rock samples gave us confidence of the existence of massive hydrothermal deposit. Even though not to use visual exploration equipment such as ROV, DTSSS, etc., traditional marine geophysical investigation approach might be a truly cost-effective tool for exploring seafloor hydrothermal massive deposit.

태평양 해양 지각판과 인도-호주 대륙 지각판간 섭입작용에 의해 형성된 남태평양 라우분지는 활동성 후열도분지로서 해저열수광상이 부존할 가능성이 매우 높은 지역이다. 한국해양연구원은 라우분지를 대상으로 다중음향측심장비(EM120)을 이용하여 정밀지형조사를 실시하여 열수활동이 활발할 것으로 예측되는 해저 지각 확장축 주변지역 (FRSC)과 해저화산 지역(MTJ)을 선별하였다. 또한, 표층 및 심해견인 자력탐사결과를 토대로 저 자기이상 현상을 나타내는 열수광체 지역을 선정하였다. 표층 및 심해 견인 자력탐사 결과 해령에서 주로 나타나는 Central Anomaly Magnetization High(CAMH)가 FRSC-2 지역에서 관측되었으며, MTJ-1 지역에서는 열수분출작용으로 추정되는 저자화이상이 발견되었다. CTD 시스템을 이용하여 열수 플룸 추적자인 투명도, 수소이온(pH), 미생물생체량(ATP), 메탄$(CH_4)$농도를 실시간으로 측정한 결과 FRSC-2와 MTJ-1 지역은 현재 매우 활발한 화산 활동이 진행되고 있음을 알 수 있었다. 이 지역에서 채취한 열수분출공과 기반암 시료는 이 지역에서 열수활동이 진행되었거나 진행되고 있으며, 실제로 열수 광체가 부존하고 있음을 확인할 수 있었다. 첨단 해저면 영상장비를 사용하지 않고도, 전통적인 해양 지구물리탐사 방법이 해저열수광상의 탐지에 비용 효과적인 탐사방법임을 알 수 있었다.

Keywords

References

  1. 곽준영, 원중선, 박찬홍, 김창환, 고영탁, 2008, 심해 및 표층 지 자기 자료를 이용한 라우분지 북동부의 열수 분출구 및 해저 지각구조 연구, 자원환경지질, 41(1), 81-92
  2. 민경덕, 서정희, 권병두, 1987, 응용지구물리학, 우성문화사, 165-168
  3. 해양수산부, 2006, 남서태평양 광물자원(해저열수광상.망간각) 개발 2005년 보고서, I. 탐사분야, 379pp
  4. 해양수산부, 2007, 남서태평양 광물자원(해저열수광상.망간각) 개발 2006년 보고서, I. 탐사분야, 289pp
  5. Baker, E. T., and German, C. R., 2004, On the global distribution of mid-ocean ridge hydrothermal vent-fields, in The Thermal Structure of the Oceanic Crust and the Dynamics of Seafloor Hydrothermal Circulation, C. R. German, J. Lin and L. M. Parson, Ed., Geophys. Monogr. Ser., 148, AGU Washington D. C., 245-266
  6. Bevis, M., Taylor, F. W., Schutz, B. E., Recy, J., Isacks, B. L., Helu, S., Singh, R., Kendrick, E., Stowell, J., Taylor, B., and Calmant, S., 1995, Geodetic observations of very rapid convergence and back-arc extension at the Tonga arc, Nature, Fig. 10. Photograph of hydrothermally altered bed rocks, containing alunite and clay minerals as altered products, sampled from the MTJ-1 area. 374, 249-251
  7. Billington, S., 1980, The morphology and tectonics of the subducted lithosphere in the Tonga-Kermadec-Fiji region from seismicity and focal mechanism solutions, Ph.D. thesis, Cornell Univ., Ithaca, NY
  8. Bird, P., 2003, An updated digital model of plate boundaries, Geochem. Geophys. Geosyst., 4, 1027
  9. Blakely, R. J., 1996, Potential theory in gravity and magnetic applications, Cambridge University Press, 441pp
  10. Caress, D. W., and Chayes, D. N., 1996, Improved processing of hydrosweep DS multibeam data on the R/V Maurice Ewing, Mar. Geophy. Res., 18, 631-650 https://doi.org/10.1007/BF00313878
  11. Corliss, J. B., Lyle, M., and Dymond, J., 1978, The chemistry of hydrothermal mounds near the Galapagos rift, Earth Planet Sci. Lett., 40, 12-24 https://doi.org/10.1016/0012-821X(78)90070-5
  12. Gamo, T., Sakai, H., Ishibashi, J., Nakayama, E., Isshiki, K., Matsuura, H., Shitashima, K., Takeuchi, K., and Ohta, S., 1993, Hydrothermal plumes in the eastern Manus Basin, Bismarck Sea: CH4, Mn, Al and pH anomalies, Deep-Sea Res., 40, 2335-2349 https://doi.org/10.1016/0967-0637(93)90108-F
  13. German, C. R., and Von Damm, K. L., 2004, Hydrothermal Processes, in Treatise on Geochemistry, 6, Holland, H. D and Turekian, K. K., Eds., Elsevier, New York, 181-222
  14. Giardani, D., and Woodhouse, J. H., 1984, Deep seismicity and modes of deformation in Tonga subduction zone, Nature, 307, 505-509 https://doi.org/10.1038/307505a0
  15. Giardani, D., and Woodhouse, J. H., 1986, Horizontal shear flow in the mantle beneath the Tonga Arc, Nature, 319, 551- 555 https://doi.org/10.1038/319551a0
  16. Hawkins, J. W., 1974, Geology of the Lau Basin, a marginal sea behind the Tonga Arc, in the Geology of Continental Margins, Burk, C. A. and Drake C. L., Eds., Springer-Verlag, New York
  17. Hawkins, J. W., 1995, Evolution of the Lau Basin - Insights from ODP Leg 135, in Active Margins and Marginal Basins of the Western Pacific, Taylor, B. and Natland, J., Eds., Am. Geophys. Union Geophysical Monograph, 88, 125-173
  18. Hawkins, J. W., Parson, L. M., Allan, J. F. et al., 1994, Proc. ODP, Sci. Results, 135, 975pp, Ocean Drilling Program, College Station, TX
  19. Hessler, R. R., and Kaharl, V. A., 1995, The deep-sea hydrothermal vent community: An overview, in Seafloor Hydrothermal system, Humphris, S. E., Zierenberg, R. A., Mullineaux, L. S. and Thomson, R. E. Eds., American Geophysical Union, 72-84
  20. Honza, E., 1991. The Tertiary arc chain in the western Pacific, Tectonophysics, 187, 285-303 https://doi.org/10.1016/0040-1951(91)90425-R
  21. Isacks, B. L., and Barazangi, M., 1977. Geometry of Benioff zones: lateral segmentation and downwards bending of the subducted lithosphere, in Island Arcs, Deep Sea Trenches, and Back Arc Basins, Talwani M., and Pitman, W. C., Eds., 94-114, Maurice Ewing Series, 1, AGU, Washington D. C
  22. Karig, D. E., 1970, Ridges and basins of the Tonga-Kermadec Isalnd arc system, J. Geophys. Res., 75, 239-254 https://doi.org/10.1029/JB075i002p00239
  23. Kennett, J., 1982, Marine Geology, Englewood Cliffs, NJ, Prentice-Hall
  24. Kongsberg maritime AS, 2003, EM120 Multibeam Echo Sounder Product Description, 855-160930/G, 38pp
  25. Kroenke, L. W., 1984, Cenozoic tectonic development of the Southwest Pacific, U. N. ESCAP, CCOP.SOPAC Tech. Bull. 6
  26. Okamura, K., Kimoto, H., Saeki, K., Ishibashi, J., Obata, H., Maruo, M., Gamo, T., Nakayama, E., and Nozaki, Y., 2001, Development of a deep-sea in situ Mn analyzer and its application for hydrothermal plume observation, Mar. Chem., 76, 17-26 https://doi.org/10.1016/S0304-4203(01)00043-3
  27. Parson, L. M., and Hawkins, J. W., 1994, Two-stage ridge propagation and the geological history of the Lau backarc basin. In Proc. ODP, Sci. Results, 135, 819-828
  28. Parson, L. M., Pearce, J. A., Murton, B. J., and RRS Charles Darwin Scientific Party, 1990, Role of ridge jumps and ridge propagation in the tectonic evolution of the Lau back-arc basin, SW Pacific, Geology, 18, 470-473 https://doi.org/10.1130/0091-7613(1990)018<0470:RORJAR>2.3.CO;2
  29. Parson, L. M., Hawkins, J. W., and Allan, J. F., 1992a, Proc. ODP Init. Repts., 135, 1230pp, Ocean Drilling Program, College Station, TX
  30. Parson, L. M., Hawkins, J. W., and Hunter, P. M., 1992b, Morphotectonics of the Lau Basin seafloor - implications for the opening history of the backarc basins, Proc. ODP Init. Repts., 135, 81-82
  31. Pelletier, B., and Louat, R., 1989, Seismotectonics and present day relative plate motions in the Tonga-Lau and Kermadec- Havre region, Tectonophysics, 165, 237-250 https://doi.org/10.1016/0040-1951(89)90049-8
  32. Schouten, H., Tivey, M. A., Fornari, D. J., and Cochran, J. R., 1999, Central anomaly magnetization high: constraints on the volcanic construction and architecture of seismic layer 2A at a fast-spreading mid-ocean ridge, the EPR at $9^{\circ}$30'-50'N, Earth Planet Sci. Lett., 169, 37-50 https://doi.org/10.1016/S0012-821X(99)00063-1
  33. Takesi, N., 1961, Rock Magnetism, Maruzen, Tokyo, 352pp
  34. Tamaki, K., and Honza, E., 1992, Global tectonics and formation of marginal basins: Role of the western Pacific, Episodes, 14, 224-230
  35. Tivey, M., and Schouten, H., 2003, A near-bottom magnetic survey of the Mid-Atlantic Ridge axis at $26^{\circ}N:$: Implications for the tectonic evolution of the TAG segment, J. Geophys. Res., 108, B5, 2277
  36. Tivey, M., Rona, P. A., and Schouten, H., 1993, Reduced crustal magnetization beneath the active sulfide mound, TAG hydrothemal field, Mid-Atlantic Ridge $26^{\circ}N:$: Earth Planet Sci. Lett., 115, 101-115 https://doi.org/10.1016/0012-821X(93)90216-V
  37. Turner, S., and Hawkesworth, C., 1998, Using geochemistry to map mantle flow beneath the Lau Basin, Geology, 26, 1019-1022 https://doi.org/10.1130/0091-7613(1998)026<1019:UGTMMF>2.3.CO;2
  38. Wille, P. C., 2005, Sound images of the ocean in research and monitoring, Springer Verlag, Berlin
  39. Zellmer, K. E., and Taylor, B., 2001, A three-plate kinematic model for Lau Basin opening, Geochem. Geophys. Geosyst., 2(5)