The Journal of Korea Institute of Information, Electronics, and Communication Technology
/
v.17
no.5
/
pp.339-350
/
2024
In construction sites, the engine of heavy machinery is tested by practitioners who manually adjust engine settings and directly measure the output. This process has consistently raised concerns regarding time costs and the risk of incidents. To address these issues, simulations of heavy equipment are conducted using Speedgoat and the Simulink API. However, due to the varying compatibility of different versions of Speedgoat hardware and Simulink API, engineers need to have a comprehensive understanding of various Simulink APIs. It is practically challenging for engineers, who must have a deep understanding of heavy equipment structures, to also possess programming skills including API usage. Thus, this paper proposes a tool that allows inputting configuration values for heavy equipment simulation and visually outputs and logs the simulation results. The proposed tool provides functionalities to deliver configuration values, such as engine settings of heavy equipment, to the simulator model and to monitor and log the resulting simulation outputs. These functionalities have been validated through scenarios. By using the developed tool, engineers are expected to reduce the burden of learning Simulink API and focus more on understanding the structure of heavy equipment. Additionally, it is anticipated that this tool will provide a more efficient and safer working environment for heavy equipment testing on construction sites.
Journal of the Korea Society of Computer and Information
/
v.29
no.10
/
pp.69-75
/
2024
Noise caused by adverse weather conditions in data collected during autonomous driving can lead to object recognition errors, potentially resulting in critical accidents. While this risk is widely acknowledged, there is a lack of research that quantitatively and systematically analyzes it. Therefore, this study aims to examine and quantify the extent to which noise affects object detection in autonomous driving environments. To this end, we utilized the YOLO v5 model trained on unprocessed datasets. The test data were divided into noise ratios of 0% (Original), 20%, 40%, 60%, and 80%, and the detection results were evaluated by constructing a Confusion Matrix. Experimental results show that as the noise ratio increases, the True Positive (TP) rate decreases, and the F1-score also significantly drops across all noise levels, specifically from 0.69 to 0.47, 0.29, 0.18, and 0.14. These findings are expected to contribute to enhancing the stability of autonomous driving technology. Future research will focus on collecting real datasets that include naturally occurring noise and developing more effective noise removal techniques.
Journal of the Korea Society of Computer and Information
/
v.29
no.10
/
pp.59-68
/
2024
In this study, we proposed an efficient model that can detect and classify the drones and related devices based on radio frequency signals. In order to increase the applicability in the battlefield, proposed model was designed to be lightweight, to ensure rapid detection and high detection accuracy. Data preprocessing was performed by applying a Discrete Fourier Transform (DFT) that is faster than Hilbert-Huang Transform (HHT). We adopted the LightGBM model as the learning model, which can be easily used by non-professionals and guarantees excellent performance in terms of classification speed and accuracy. CardRF dataset was used to verify the performance of the proposed model. As a result of the experiment, the accuracy of 3 classes classification for detecting and classifying drones, WiFi, and Bluetooth device was 99.63% when the number of sample points was set to 100k and 99.40% when set to 500k during the data preprocessing with DFT. And, in the 10 classes classification for 6 drones, 2 Bluetooth devices, and 2 WiFi devices, the accuracy was 95.65% for 100k and 96.83% for 500k, confirming significantly improved detection performance compared to previous studies.
Recently the development of ICT has a big impact on education field, and diffusion of smart devices has brought new education paradigm. Since people has an opportunity to use various contents anytime and communicate in an interactive way, the method of learning has changing. In 2011, Korean government has established the smart education promotion plan to be a first mover in the paradigm shift from e-learning to smart learning. Especially, government aimed to improve the quality of learning materials and method in public schools, and also to decrease the high expenditure on private education. However, the achievement of smart education policy has not emerged yet, and the refinement of smart learning policy and strategy is essential at this moment. Therefore, the purpose of this study is to propose the successful strategies for smart learning in public education. First, this study explores the status of public education and smart learning environment in Korea. Then, it derives the key success factors through SWOT(Strength, Weakness, Opportunity, Threat) analysis, and suggests strategic priorities through AHP(Analytic Hierarchy Priority) method. The interview and survey were conducted with total 20 teachers, who works in public schools. As a results, focusing on weakness-threat(WT) strategy is the most prior goal for public education, to activate the smart learning. As sub-factors, promoting the education programs for teachers($W_2$), which is still a weakness, appeared as the most important factor to be improved. The second sub-factor with high priority was an efficient optimizing the capability of new learning method($S_4$), which is a strength of systematic public education environment. The third sub-factor with high priority was the extension of limited government support($T_4$), which could be a threat to other public schools with no financial support. In other words, the results implicate that government institution factors should be considered with high priority to make invisible achievement in smart learning. This study is significant as an initial approach with strategic perspective for public education. While the limitation of this study is that survey and interview were conducted with only teachers. Accordingly, the future study needs to be analyzed in effectiveness and feasibility, by considering perspectives from field experts and policy makers.
The goal of this study is to examine the status quo of industrial-educational cooperation in Technical high schools. Based upon the findings of the current conditions, this study ultimately aims to propose methods through which more active industrial-educational cooperation can be stimulated. The methods chosen for this study are reference research and surveys. The survey was conducted by imposing complete enumeration on the targeted high schools that specialize in industry related fields. The survey targets were the directions of academic affairs, the directions of practical affairs, and the directors of the educational curriculum of each school.The research results are as follows: First, the teachers recognize the necessities of having opportunities to gain specific skills in different industrial fields, having chances to get stable employment, and securing the industrial institution's competitiveness through the customized nurturing and supply of human resources as the primary goals of industrial-educational cooperation. Second, the teachers express the similar opinion that industrial-educational cooperation in their current system is inappropriate to achieve their goals. Third, the teachers claim that an educational curriculum that emphasizes industrial educational cooperation must be developed and managed. Fourth, it was found that when schools plan their educational curriculum, they often do not implement the requests from industrial institutions. Fifth, major educational program implement methods that meet the requests of the industrial institutions include field trips or the introduction of other field-based experience learning programs, the application of customized curriculums based on industrial-educational cooperation, and the invitation of industrial-educational personnel as teachers to school environments. Sixth, it was concluded that educational institutions need to proactively seek companies for cooperation; they need to support, develop, and manage school programs that are based on industrial-educational cooperation; and finally, institutions need to enthusiastically participate in the government's vocational education policies that are founded upon industrial-educational cooperation. Seventh, the enforcement of selective curriculum for the benefit of diversifying the educational program; the pursuit of balancing the specialized curriculum through shedding the national educational level provided within the regular curriculum; and the establishment of related amendments on the national level to provide effective industrial-educational cooperation have been identified as the vital factors that can develop the educational programs within high schools specializing in industry and that are closely related to industrial educational cooperation.
KSCE Journal of Civil and Environmental Engineering Research
/
v.40
no.3
/
pp.273-283
/
2020
Because of climate change, the occurrence of localized and heavy rainfall is increasing. It is important to predict floods in urban areas that have suffered inundation in the past. For flood prediction, not only numerical analysis models but also machine learning-based models can be applied. The LSTM (Long Short-Term Memory) neural network used in this study is appropriate for sequence data, but it demands a lot of data. However, rainfall that causes flooding does not appear every year in a single urban basin, meaning it is difficult to collect enough data for deep learning. Therefore, in addition to the rainfall observed in the study area, the observed rainfall in another urban basin was applied in the predictive model. The LSTM neural network was used for predicting the total overflow, and the result of the SWMM (Storm Water Management Model) was applied as target data. The prediction of the inundation map was performed by using logistic regression; the independent variable was the total overflow and the dependent variable was the presence or absence of flooding in each grid. The dependent variable of logistic regression was collected through the simulation results of a two-dimensional flood model. The input data of the two-dimensional flood model were the overflow at each manhole calculated by the SWMM. According to the LSTM neural network parameters, the prediction results of total overflow were compared. Four predictive models were used in this study depending on the parameter of the LSTM. The average RMSE (Root Mean Square Error) for verification and testing was 1.4279 ㎥/s, 1.0079 ㎥/s for the four LSTM models. The minimum RMSE of the verification and testing was calculated as 1.1655 ㎥/s and 0.8797 ㎥/s. It was confirmed that the total overflow can be predicted similarly to the SWMM simulation results. The prediction of inundation extent was performed by linking the logistic regression with the results of the LSTM neural network, and the maximum area fitness was 97.33 % when more than 0.5 m depth was considered. The methodology presented in this study would be helpful in improving urban flood response based on deep learning methodology.
NCS education was created to realize a society in which skills and abilities are respected, such as transcending specifications, establishing recruitment systems, and developing and disseminating national incompetence standards. At the university level, special lectures and job training are being strengthened to raise industrial experts. Especially, in the field of animation, new technologies are rapidly emerging and demanding convergent talents with various fields. In order to meet these social demands, there is a limit to the existing one-class teaching method. In order to solve this problem, it is necessary to participate in a variety of specialized teachers. In other words, rather than solving problems of students' job training and job creation, It is aimed to solve jointly, Team teaching was suggested as a method for this. The expected effects that can be obtained through this are as follows. First, the field of animation is becoming more diverse and complex. The ability to use NCS job-related skills pools can be matched with professors from other departments to enable a wider range of professional instruction. Second, it is possible to use partial professorships in other departments by actively utilizing professors in the university. This leads to the strengthening of the capacity of teachers in universities. Third, it is possible to build a broader and more integrated educational system through cooperative teaching of professors in other departments. Finally, the advantages of special lectures and mentor support of college professors' pools are broader than those of field specialists. A variety of guidance for students can be made with responsible professors. In other words, time and space constraints can be avoided because the mentor is easily met and guided by the university.
Journal of The Korean Association For Science Education
/
v.35
no.6
/
pp.985-995
/
2015
This study examines the effects of the introduction of artistic and technological factors on science problems for the activation of creative and integrated thinking. We developed problems consisting of STA(problems that introduced technological and artistic factors on the College Scholastic Ability Test) and TA(problems that introduced artistic factors in a technological context). Subjects of the study included 60 high school senior students in Daegu. Their problem solving processes for STA were examined. Four students were interviewed using the retrospective interview method. Also, after finishing TA, the problem solving processes of four students were examined. The results of the study are as follows. First, students selected scientific context more than artistic and technological contexts. It was found that students preferred short length problem in order to solve problems in a short time. Second, students were more interested in artistic and technological contexts of STA than scientific context, but felt that they were more difficult. Moreover, students were more interested about the context of TA than scientific context. Third, irrespective of the given contexts in STA, students have a tendency to solve problems through relatively brief ways by using core scientific knowledge. This can seem to mean that there is a possibility to stereotype the problem solving process through repeated learning. Logical thinking and elaboration were observed, but creativity was not conspicuous. In addition, integrated thinking was not observed in all contexts of STA. Fourth, science related problems of TA showed similar results. However, in problems related to everyday life, students made original descriptions that they based on their daily lives. Particularly, in creative design, original ideas and integrated thinking were observed.
Sulfur dioxide (SO2) is primarily released through industrial, residential, and transportation activities, and creates secondary air pollutants through chemical reactions in the atmosphere. Long-term exposure to SO2 can result in a negative effect on the human body causing respiratory or cardiovascular disease, which makes the effective and continuous monitoring of SO2 crucial. In South Korea, SO2 monitoring at ground stations has been performed, but this does not provide spatially continuous information of SO2 concentrations. Thus, this research estimated spatially continuous ground-level SO2 concentrations at 1 km resolution over South Korea through the synergistic use of satellite data and numerical models. A stacking ensemble approach, fusing multiple machine learning algorithms at two levels (i.e., base and meta), was adopted for ground-level SO2 estimation using data from January 2015 to April 2019. Random forest and extreme gradient boosting were used as based models and multiple linear regression was adopted for the meta-model. The cross-validation results showed that the meta-model produced the improved performance by 25% compared to the base models, resulting in the correlation coefficient of 0.48 and root-mean-square-error of 0.0032 ppm. In addition, the temporal transferability of the approach was evaluated for one-year data which were not used in the model development. The spatial distribution of ground-level SO2 concentrations based on the proposed model agreed with the general seasonality of SO2 and the temporal patterns of emission sources.
Kim, Eun-Sook;Lee, Bora;Kim, Jaebeom;Cho, Nanghyun;Lim, Jong-Hwan
Journal of Korean Society of Forest Science
/
v.109
no.3
/
pp.259-270
/
2020
Extreme weather events, such as heat and drought, have occurred frequently over the past two decades. This has led to continuous reports of cases of forest damage due to physiological stress, not pest damage. In 2014, pine trees were collectively damaged in the forest genetic resources reserve of Sogwang-ri, Uljin, South Korea. An investigation was launched to determine the causes of the dieback, so that a forest management plan could be prepared to deal with the current dieback, and to prevent future damage. This study aimedto 1) understand the topographic and structural characteristics of the area which experienced pine tree dieback, 2) identify the main causes of the dieback, and 3) predict future risk areas through the use of machine-learning techniques. A model for identifying risk areas was developed using 14 explanatory variables, including location, elevation, slope, and age class. When three machine-learning techniques-Decision Tree, Random Forest (RF), and Support Vector Machine (SVM) were applied to the model, RF and SVM showed higher predictability scores, with accuracies over 93%. Our analysis of the variable set showed that the topographical areas most vulnerable to pine dieback were those with high altitudes, high daily solar radiation, and limited water availability. We also found that, when it came to forest stand characteristics, pine trees with high vertical stand densities (5-15 m high) and higher age classes experienced a higher risk of dieback. The RF and SVM models predicted that 9.5% or 115 ha of the Geumgang Pine Forest are at high risk for pine dieback. Our study suggests the need for further investigation into the vulnerable areas of the Geumgang Pine Forest, and also for climate change adaptive forest management steps to protect those areas which remain undamaged.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.