DOI QR코드

DOI QR Code

Risk Assessment of Pine Tree Dieback in Sogwang-Ri, Uljin

울진 소광리 금강소나무 고사발생 특성 분석 및 위험지역 평가

  • Kim, Eun-Sook (Division of Forest Ecology and Climate Change, National Institute of Forest Science) ;
  • Lee, Bora (Division of Forest Ecology and Climate Change, National Institute of Forest Science) ;
  • Kim, Jaebeom (Research Institute for Gangwon) ;
  • Cho, Nanghyun (Department of Environmental Science, Kangwon National University) ;
  • Lim, Jong-Hwan (Division of Forest Ecology and Climate Change, National Institute of Forest Science)
  • 김은숙 (국립산림과학원 기후변화생태연구과) ;
  • 이보라 (국립산림과학원 기후변화생태연구과) ;
  • 김재범 (강원연구원) ;
  • 조낭현 (강원대학교 환경학과) ;
  • 임종환 (국립산림과학원 기후변화생태연구과)
  • Received : 2020.04.16
  • Accepted : 2020.07.06
  • Published : 2020.09.30

Abstract

Extreme weather events, such as heat and drought, have occurred frequently over the past two decades. This has led to continuous reports of cases of forest damage due to physiological stress, not pest damage. In 2014, pine trees were collectively damaged in the forest genetic resources reserve of Sogwang-ri, Uljin, South Korea. An investigation was launched to determine the causes of the dieback, so that a forest management plan could be prepared to deal with the current dieback, and to prevent future damage. This study aimedto 1) understand the topographic and structural characteristics of the area which experienced pine tree dieback, 2) identify the main causes of the dieback, and 3) predict future risk areas through the use of machine-learning techniques. A model for identifying risk areas was developed using 14 explanatory variables, including location, elevation, slope, and age class. When three machine-learning techniques-Decision Tree, Random Forest (RF), and Support Vector Machine (SVM) were applied to the model, RF and SVM showed higher predictability scores, with accuracies over 93%. Our analysis of the variable set showed that the topographical areas most vulnerable to pine dieback were those with high altitudes, high daily solar radiation, and limited water availability. We also found that, when it came to forest stand characteristics, pine trees with high vertical stand densities (5-15 m high) and higher age classes experienced a higher risk of dieback. The RF and SVM models predicted that 9.5% or 115 ha of the Geumgang Pine Forest are at high risk for pine dieback. Our study suggests the need for further investigation into the vulnerable areas of the Geumgang Pine Forest, and also for climate change adaptive forest management steps to protect those areas which remain undamaged.

최근 20년 동안 고온, 건조 등 이상기상 현상이 빈발해지면서 병해충으로 인한 피해가 아닌 생리적 스트레스로 인한 소나무 피해 사례가 지속적으로 보고되고 있다. 2014년도에는 울진 소광리 산림유전자원보호구역 내에 금강소나무(Pinus densiflora for. erecta Uyeki)의 집단고사가 발견되어 이에 대한 원인 구명과 산림관리방안 마련이 요구되었다. 이에 본 연구는 2008~2015년 항공사진에서 발견된 울진 소광리 금강소나무 고사 피해 발생 지역의 지형 및 임분 특성을 파악하여 고사 발생의 영향 요인을 도출하고 이를 기반으로 전체 지역의 고사피해 발생 위험지역을 예측하는 것을 목표로 하였다. 소나무 고사발생 지점 정보와 해발고도, 경사 등의 지형정보, 영급, 경급 등의 임분 정보 등 총 14개의 설명변수를 이용하여 고사발생 예측모델을 구축하였다. 모형 개발에는 Decision Tree, Random Forest (RF), Support Vector Machine (SVM) 등 기계학습 기법을 적용하였으며, RF와 SVM가 정확도 93% 이상으로 좋은 성능을 보였다. 소나무 고사와 관련된 주요 변수 분석 결과, 소나무 고사의 지형적인 취약지역은 해발고도가 높은 동시에 일사량이 높으며 수분 조건이 불리한 지역이었으며, 임분 특성 중에서는 특히 5~15m 높이의 수직적 임분밀도가 높은 소나무림, 그리고 영급이 높은 소나무림에서 고사 위험성이 높다고 평가되었다. RF와 SVM 모형 예측에 따라, 소나무 고사위험도가 높은 지역의 면적은 연구대상지 전체 소나무림 면적의 약 9.5%, 115ha로 평가되었다. 본 연구의 고사위험도 평가 결과는 금강소나무 취약지역의 현황을 조사하고 아직 피해가 발생하지 않은 취약지역에 대한 적극적인 기후변화 적응 산림관리를 수행하기 위한 기반자료로 활용될 수 있다.

Keywords

References

  1. Allen, C.D., Macalady, A.K., Chenchouni, H., Bachelet, D., McDowell, N., Vennetier, M., Kitzberger, T., Rigling, A., Breshears, D.D., Hogg, E.H., Gonzalez, P., Fensham, R., Zhang, Z., Castro, J., Demidova, N., Lim, J.-H., Allard, G., Running, S.W., Semerci, A. and Cobb, N. 2010. A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. Forest Ecology and Management 259(4): 660-684. https://doi.org/10.1016/j.foreco.2009.09.001
  2. Allen-Reid, D., Anhold, J., Cluck, D., Eager, T., Mask, R., McMillin, J., Munson, S., Negron, J., Rogers, T., Ryerson, D., Smith, E., Smith, S., Steed, B. and Thier, R. 2008. Pinon pine mortality event in the Southwest: An update for 2005. U.S. Forest Service.
  3. Bae, S.W., Lee, C.Y., Park, B.W., Hong, S.C., Kim, I.S., Han, S.U., Hong, K,N., Lee, S.W., Cho, K.H., Hwang, J.H., Lee, S.T., Kim, K.H., Moon, I.S., Son, Y.M., Cheon, C.H., Park, J.H., Ka, K.H., Lee, H.J., Park, M.J., Kim, C.Y., Kim, K.W., Lim, J.H. and Kim, S.J. 2012. Commercial tree species (1) Pinus densiflora. NIFoS. pp. 250.
  4. Bennett, A.C., McDowell, N.G., Allen, C.D. and Anderson‐ Teixeira, K.J. 2015. Larger trees suffer most during drought in forests worldwide. Nature Plants 1: 15139. https://doi.org/10.1038/nplants.2015.139
  5. Beven, K.J. and Kirkby, M.J. 1979. A physically based, variable contributing area model of basin hydrology. Hydrological Science Bulletin 24(1): 43-69. https://doi.org/10.1080/02626667909491834
  6. Bottero, A., D'Amato, A.W., Palik, B.J., Bradford, J.B., Fraver, S., Battaglia, M.A. and Asherin, L.A. 2017. Densitydependent vulnerability of forest ecosystems to drought. Journal of Applied Ecology 54: 1605-1614. https://doi.org/10.1111/1365-2664.12847
  7. Breiman, L., Friedman, J.H., Olshen, R.A. and Stone, C.J. 1984. Classification and regression trees. Monterey, CA: Wadsworth & Brooks/Cole Advanced Books & Software.
  8. Cohen, J. 1960. A coefficient of agreement for nominal scales. Educational and Psychological Measurement 20(1): 37-46. https://doi.org/10.1177/001316446002000104
  9. Cortes, C. and Vapnik, V. 1995. Support-vector networks. Machine Learning 20(3): 273. https://doi.org/10.1007/BF00994018
  10. Fawcett, T. 2006. An Introduction to ROC Analysis. Pattern Recognition Letters 27(8): 861-874. https://doi.org/10.1016/j.patrec.2005.10.010
  11. Greenwood, S., Ruiz‐Benito, P., Martinez‐Vilalta, J., Lloret, F., Kitzberger, T., Allen, C.D. and Kraft, N.J. 2017. Tree mortality across biomes is promoted by drought intensity, lower wood density and higher specific leaf area. Ecology Letter 2: 539-553.
  12. Halofsky, J.E. and Peterson, D.L. 2016. Climate Change Vulnerabilities and Adaptation Options for Forest Vegetation Management in the Northwestern USA. Atmosphere 7(46): 1-14.
  13. Ho, T.K. 1995. Random Decision Forests. Proceedings of the 3rd International Conference on Document Analysis and Recognition, Montreal, QC, 14-16 August 1995. pp. 278-282.
  14. Jeong, J.H., Won, H.K. and Kim, I.H. 2004. Forest Site in Korea -Forest Soil-. NIFoS. pp. 621.
  15. Jung, H.S. 2018. Improved the Stand Structure Map for Pinus densiflora Areas in Sogwang-ri, Ul-Jin based on Airborne LiDAR. NIFoS. pp. 102.
  16. Kim, E.S., Lee, J.S., Kim, J., Lim, J.H. and Lee, J.S. 2016. Conservation and management of Korean pine forest. NIFoS. pp. 22.
  17. Kim, J., Kim, E.S. and Lim, J.H. 2017. Topographic and Meteorological Characteristics of Pinus densiflora Tree Dieback in Sogwang-Ri, Uljin. Korean Journal of Agricultural and Forest Meteorology 19(1): 10-18. https://doi.org/10.5532/KJAFM.2017.19.1.10
  18. Klein, T. and Hartmann, H. 2019. Climate change drives tree mortality. Science 362(6416): 758.
  19. Kurz, W.A., Dymond, C.C., Stinson, G., Rampley, G.J., Neilson, E.T., Carroll, A.L., Ebata, T. and Safranyik, L. 2008. Mountain pine beetle and forest carbon feedback to climate change. Nature 452: 987-990. https://doi.org/10.1038/nature06777
  20. Li, M., Im, J. and Beier, C. 2013. Machine learning approaches for forest classification and change analysis using multi-temporal Landsat TM images over Huntington Wildlife Forest. GIScience & Remote Sensing 50(4): 361-384. https://doi.org/10.1080/15481603.2013.819161
  21. Lim, J.H., Kim, E.S., Lee, B., Kim, S.H. and Chang, G.C. 2017. An analysis of the hail damages to Korean forests in 2017 by meteorology, species and topography. Korean Journal of Agricultural and Forest Meteorology 19(4): 280-292. https://doi.org/10.5532/KJAFM.2017.19.4.280
  22. Mobbertin, M., Mayer, P., Wohlgemuth, T., Feldmeyer-Christe, E., Graf, U., Zimmermann, N.E. and Rigling, A. 2005. The decline of Pinus sylvestris L. Forests in the Swiss Rhone Valley - a Result of Drought Stress?. Phyton 45(4): 153-156.
  23. Nagel, L.M., Palik, B.J., Battaglia, M.A., D'Amato, A.W., Guldin, J.M., Swanston, C.W., Janowiak, M.K., Powers, M.P., Joyce, L.A., Millar, C.I., Peterson, D.L., Ganio, L.M., Kirschbaum, C. and Roske, M.R. 2017. Adaptive silviculture for climate change: A national experiment in managerscientist partnerships to apply an adaptation framework. Journal of Forestry 115(3): 167-178. https://doi.org/10.5849/jof.16-039
  24. NIFoS (National Institute of Forest Science). 2009. Causes and future outlook of Korean red pine dieback. NIFoS. pp. 21.
  25. Oh, H.J. 2010. Landslide detection and landslide susceptibility mapping using aerialphotos and artificial neural networks. Korean Journal of Remote Sensing 26(1): 47-57.
  26. Rowland, L., da Costa, A.C.L., Galbraith, D.R., Oliveira, R.S., Binks, O.J., Oliveira, A.A.R., Pullen, A.M., Doughty, C.E., Metcalfe, D.B., Vasconcelos, S.S., Ferreira, L.V., Malhi, Y., Grace, J., Mencuccini, M. and Meir, P. 2015. Death from drought in tropical forests is triggered by hydraulics not carbon starvation. Nature 528: 119-121. https://doi.org/10.1038/nature15539
  27. Ryo, M., and Rillig, M.C. 2017. Statistically reinforced machine learning for nonlinear patterns and variable interactions. Ecosphere 8(11)d: e01976. https://doi.org/10.1002/ecs2.1976
  28. Seo, M.G. 2014. Data processing and analysis using R. Publisher Gilbut. pp. 580.
  29. Stockwell, D.R.B. and Peterson, A.T. 2002. Effects of sample size on accuracy of species distribution models. Ecological Modelling 148(1): 1-13. https://doi.org/10.1016/S0304-3800(01)00388-X
  30. Thessen, A. 2016. Adoption of machine learning techniques in ecology and earth science. One Ecosystem 1(2): e8621. https://doi.org/10.3897/oneeco.1.e8621
  31. USDA (United States Department of Agriculture). 2018. Southwestern region arizona forest health 2018. ArgGIS MapJournal.
  32. Ye, H., Beamish, R.J., Glaser, S.M., Grant, S.C., Hsieh, C.H., Richards, L.J., Schnute, J.T. and Sugihara, G. 2015. Equation-free mechanistic ecosystem forecasting using empirical dynamic modeling. Proceedings ofthe National Academy of Sciences 112(13): E1569-E1576. https://doi.org/10.1073/pnas.1417063112
  33. Zhang, J., Finley, K.A., Johnson, N.G. and Ritchie, M.W. 2019. Lowering stand density enhances resiliency of ponderosa pine forests to disturbances and climate change. Forest Science 65(4): 496-507. https://doi.org/10.1093/forsci/fxz006