• Title/Summary/Keyword: 표면수식

Search Result 101, Processing Time 0.028 seconds

The heat treatment characteristics of plasma sprayed ZrO$_2$-Y$_2$O$_3$ coatings (플라즈마 용해법에 의한 ZrO$_2$-Y$_2$O$_3$ 피복층의 가열처리효과)

  • 정병근;김한삼;김수식
    • Journal of the Korean institute of surface engineering
    • /
    • v.27 no.1
    • /
    • pp.12-18
    • /
    • 1994
  • The plasma spray process was used to deposit coatings of $ZrO_2$-8wt%Y2O3 powders on mild steel sub-strate, and the characteristics of as-deposited and heat treated coatings have been investigated. Particulary, the variations of porosity, wear resistance, thermal barrier and thermal shock resistance in $ZrO_2$-8wt% $Y_2O_3$coatings after heat treatment under vacuum circumstance have been investigated. The porosity of the coating layer was increased with increased spray distance. In the case of the arc current of 450A and at the spray distance of 50mm, it was obtained the lowest amount of porosity. After heat treatment, the amount of porosity was found to be decreased, and the wear resistance, microhardness and thermal shock resistance were im-proved. However, the thermal barrier was decreased.

  • PDF

안전명인 인터뷰 - 근로자들의 마음을 보듬는 감성안전경영 전개, 장관섭 (주)영광YKMC 대표이사

  • Jeong, Tae-Yeong
    • The Safety technology
    • /
    • no.183
    • /
    • pp.22-23
    • /
    • 2013
  • 충남 아산시 아산테크노벨리 산업단지에 위치하고 있는 (주)영광YKMC. 반도체는 물론 항공기에 들어가는 첨단부품을 생산하고 있는 이곳은 산단 내에서도 남다른 유명세를 떨치고 있다. 가공에서부터 조립, 표면처리 등 제품 생산에 필요한 모든 과정을 한꺼번에 처리할 수 있는 공정 시스템을 갖추고 있기 때문이다. 일반적인 소규모 제조업체들이 하나의 공정에만 집중하는 것에 비해 (주)영광YKMC는 부품 생산 전문업체로서의 입지를 확고하게 구축하고 있는 것이다. 관련 기술의 특허 4건, 실용신안등록 12건 등 총 16개의 지식재산권을 보유하고 있다는 것에서 전문업체라는 수식어가 전혀 어색하지 않다. 특히 (주)영광YKMC의 장관섭 대표이사는 자난해 표면처리 직종에서 '대한민국명장'에 선정되면서 회사의 기술력을 널리 알리기도 했다. 이곳은 지역 안전인들 사이에서도 각별한 주목을 받고 있다. 근로자들의 마음을 보듬는 이른바 감성안전경영이 모범적으로 전개되고 있기 때문이다. 근로자들의 안전을 무엇보다 최우선으로 여기고 있는 장관섭 (주)영광YKMC 대표이사를 만나봤다.

  • PDF

New Motor Parameter Estimation Method of Surface-mounted Permanent Magnet Motors (표면 부착형 영구자석 전동기의 새로운 상수 추정 방법)

  • Lee, Dong-Myung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.4
    • /
    • pp.517-522
    • /
    • 2019
  • This paper proposes a new motor parameter estimation method. Because the proposed method is based on difference equations, it does not affect the error in the voltage magnitude so called dead-time effect. Information on the motor constant may be needed to improve the motor control performance. For example, a control technique called DTC (Direct Torque Control) requires a motor constant when calculating the torque and flux magnitude. As another example, in the case of predictive control, information on the motor parameters is required to generate voltage references. Because the constant of the motor fluctuates according to the driving environment, it is essential to estimate the correct motor constant because the control performance is degraded when incorrect motor information is used. In the proposed scheme, the motor constant estimated based on the voltage difference equation is obtained using the RLS (Recursive Least Square) technique. The RLS algorithm is applied to obtain the value through an iterative calculation so that the estimation performance is robust to noise. The simulation results carried out with surface mounted permanent magnet motors confirmed the validity of the proposed method.

A Study on the Channel Length and the Channel Punchthrough of Self-Aligned DMOS Transistor (자기정렬 DMOS 트랜지스터의 채널 길이와 채널 Punchthrough에 관한 고찰)

  • Kim, Jong-Oh;Kim, Jin-Hyoung;Choi, Jong-Su;Yoob, Han-Sub
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.25 no.11
    • /
    • pp.1286-1293
    • /
    • 1988
  • A general closed form expression for the channel length of the self-aligned double-diffused MOS transistor is obtained from the 2-dimensional Gaussian doping profile. The proposed model in this paper is composed of the doping concentration of the substrate, the final surface doping concentration and the vertical junction depth of the each double-diffused region. The calculated channel length is in good agreement with the experimental results. Also, the optimum channel structure for the prevention of the channel puncthrough is obtained by the averaged doping concentration in the channel region. A correspondence between the results of device simulation of channel punchthrough and the estimations of simplified model is confirmed.

  • PDF

Interactive Simulation between Rigid body and Fluid using Simplified Fluid-Surface Model (간략화된 유체 표면모델을 이용한 강체와 유체의 상호작용 시뮬레이션)

  • Kim, Eun-Ju
    • Journal of Korea Multimedia Society
    • /
    • v.12 no.2
    • /
    • pp.323-328
    • /
    • 2009
  • Natural Phenomena are simulated to make computer users feel verisimilitude and be immersed in games or virtual reality. The important factor in simulating fluid such as water or sea using 3D rendering technology in games or virtual reality is real-time interaction and reality. There are many difficulties in simulating fluid models because it is controlled by many equations of each specific situation and many parameter values. In addition, it needs a lot of time in processing physically-based simulation. In this paper, I suggest simplified fluid-surface model in order to represent interaction between rigid body and fluid, and it can make faster simulation by improved processing. Also, I show movement of fluid surface which is come from collision of rigid body caused by reaction of fluid in representing interaction between rigid body and fluid surface. This natural fluid-surface model suggested in this paper is represented realistically in real-time using fluid dynamics veri similarly. And the fluid-surface model will be applicable in games or animation by realizing it for PC environment to interact with this.

  • PDF

Voltammetric Determination of Cu(II) Ion at a Chemically Modified Carbon-Paste Electrode Containing 1-(2-pyridylazo)-2-naphthol (1-(2-Pyridylazo)-2-naphthol 수식전극을 사용한 Cu(II) 이온의 전압전류법적 정량)

  • Jun-Ung Bae;Hee Sook Jun;Hye-Young Jang
    • Journal of the Korean Chemical Society
    • /
    • v.37 no.8
    • /
    • pp.723-729
    • /
    • 1993
  • Cu(II) ion-responsive chemically modifed electrodes (CMEs) were constructed by incorporating 1-(2-pyridylazo)-2-naphthol (PAN) into a conventional carbon-paste mixture of graphite powder and Nujol oil. Cu(II) ion was chemically deposited on the surface of the PAN-chemically modified electrode in the absence of an applied potential by immersion of the electrode in a buffer solution (pH 3.2) containing Cu(II) ion, and then reduced at a constant potential in 0.1 M KNO$_3$. And a well-defined voltammetric peak could be obtained by scanning the potential to the positive direction. The electrode surface could be regenerated with exposure to acid solution and reused for the determination of Cu(II) ion. In 5 deposition / measurement / regeneration cycles, the response could be reproduced with 6.1${\%}$ relative standard deviation. In case of using the differential pulse voltammetry, the calibration curve for Cu(II) was linear over the range of 2.0 ${times}$ 10$^{-7}$ ∼ 1.0 ${times}$ 10$^{-6}$ M. And the detection limit was 6.0 ${times}$ 10$^{-8}$ M. Studies of the effect of diverse ions showed that Co, Ni, Zn, Pb, Mg and Ag ions added 10 times more than Cu(II) ion did not influence on the determination of Cu(II) ion, except EDTA and oxalate ions.

  • PDF

Analysis of Surface Temperature on Urban Green Space Using Unmanned Aerial Vehicle Images - A Case of Sorasan Mt. Nature Garden, Iksan, South Korea - (무인항공 영상을 활용한 도심녹지 표면온도 특성 분석 - 익산 소라산 자연마당을 대상으로 -)

  • CHOI, Tae-Young;MOON, Ho-Gyeong;CHA, Jae-Gyu
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.20 no.3
    • /
    • pp.90-103
    • /
    • 2017
  • This study analyzed the surface temperature characteristics of urban green spaces under high summer temperatures to clarify the functions of green spaces in reducing urban temperatures. We obtained accurate surface temperature data using highresolution unmanned aerial vehicle images of the survey site, which was an isolated green space in the city. We analyzed differences in the surface temperature by land cover type, vegetation type, species type, and the relationship between surface temperature and vegetation volume. Based on the results, among the land cover types, wetlands and forests had low temperatures and paving areas had very high temperatures. Regarding vegetation type, broad-leaved trees had lower temperatures than coniferous trees in forests. However, in planted areas, coniferous trees had lower temperatures than broad-leaved trees. The temperature of long grass was higher than that of short grass, which suggested that the volume of grass affected the temperature. Regarding forest species type, the temperature of broad-leaved Robinia pseudoacacia forest and mixed broad-leaved forest was lower than coniferous Pinus densiflora forest. There was a slight difference in temperature between R. pseudoacacia forest and mixed broad-leaved forest. The analysis of the relationship between vegetation volume and temperature by forest species type indicated a negative correlation, where the temperature decreased with increasing vegetation volume, similar to the results of previous studies. However, we found a weak positive correlation in R. pseudoacacia forest; therefore, an increase in volume may not reduce the surface temperature depending on the dominant species.

Implementation of Roughness-Induced Turbulent Transition Model on Inflight Icing Code (표면 조도를 고려한 난류 천이 모델의 항공기 결빙 해석자에 대한 적용 연구)

  • Min, Seungin;Yee, Kwanjung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.48 no.1
    • /
    • pp.23-33
    • /
    • 2020
  • In this study, the effect of surface roughness distribution and its influence on the inflight icing code was investigated. Previous numerical studies focused on the magnitude of surface roughness, and the effects were only addressed in terms of changes in thermal boundary layers with fully turbulent assumption. In addition, the empirical formula was used to take account the turbulent transition due to surface roughness, which was regarded as reducing the accuracy of ice shape prediction. Therefore, in this study, the turbulent transition model based on the two-equation turbulence model was applied to consider the effects of surface roughness. In order to consider the effect of surface roughness, the transport equation for roughness amplification parameter was applied, and the surface roughness distribution model was implemented to consider the physical properties. For validation, the surface roughness, convective heat transfer coefficient, and ice shape were compared with experimental results and other numerical methodology. As a result, it was confirmed that the excessive prediction of the heat transfer coefficient at the leading edge and the ice horn shape at the bottom of the airfoil were improved accordingly.

Radiation Characteristics of Noise Generated by Steady Loading on Rotating Blade (회전익 표면의 정상하중에 의한 소음의 방사특성)

  • Jeon, Wonju;Lee, Duck-Joo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.36 no.4
    • /
    • pp.307-314
    • /
    • 2008
  • Loading noise generated by steady aerodynamic force exerted on the rotating body surface is theoretically analyzed and its radiation characteristics is examined as a fundamental research of helicopter rotor noise. For simplicity, the force exerted on each blade is not distributed but concentrated at one point and the noise is evaluated by using Lowson' exact formula with a discussion of the physical meaning of each term in the formula. For a single point force rotating with various angular frequencies, we investigated the radiation characteristics and theoretically explained the physical behavior at near and far-field. By investigating the amplitude of acoustic pressure with various distances, we observed the different decreasing ratio at near- and far-field with the discussion of the effect of acceleration of angular frequency. Finally, the phenomenon that the noise level is reduced everywhere as the number of blade increases is explained with the suggestion of a noise reduction idea, the limitations of this study, and the future research topics.

Blood Flow Rate Estimation using Proximal Isovelocity Surface Area Technique Based on Region-Based Contour Scheme and Surface Subdivision Flow Model (영역기반 윤곽선 기법과 표면 분할 유동모델에 기반한 근위 등속 표면적 기법을 이용한 혈류량 추정)

  • Jin, Kyung-Chan;Cho, Jin-Ho
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.38 no.1
    • /
    • pp.45-52
    • /
    • 2001
  • The proximal isovelocity surface area (PISA) method is an effective way of measuring the regurgitant blood flow rate in the mitral valve. This method defines the modelling required to describe the geometry of the isotach of the PISA. In the normal PISA flow model, the flow rate is calculated assuming that the surface of the isotach is either hemispherical or non-hemispherical numerically. However, this paper evaluated the estimate flow rate using a direct surface subdivision flow model based on the height field after isotach extraction using a region-based scheme. To validate the proposed method, the various PISA flow models were compared using pusatile color Doppler images with flow rates ranging from $30\;cm^3/sec\;to\;60\;cm^3/sec$ flow rate. Whereas the hemispherical flow model had a mean value of $29\;cm^3/sec$ and underestimated the measured flow rate by 35%, the proposed model and non-hemispherical model produced a c;ame mean value of $45\;cm^3/sec$, moreover, both flow models produced a similar pulsatile flow rate.

  • PDF