Blood Flow Rate Estimation using Proximal Isovelocity Surface Area Technique Based on Region-Based Contour Scheme and Surface Subdivision Flow Model

영역기반 윤곽선 기법과 표면 분할 유동모델에 기반한 근위 등속 표면적 기법을 이용한 혈류량 추정

  • Jin, Kyung-Chan (Dept. of Electronic Eng., Kyungpook National University) ;
  • Cho, Jin-Ho (Dept. of Biomedical Eng., Kyungpook National University)
  • Published : 2001.02.28

Abstract

The proximal isovelocity surface area (PISA) method is an effective way of measuring the regurgitant blood flow rate in the mitral valve. This method defines the modelling required to describe the geometry of the isotach of the PISA. In the normal PISA flow model, the flow rate is calculated assuming that the surface of the isotach is either hemispherical or non-hemispherical numerically. However, this paper evaluated the estimate flow rate using a direct surface subdivision flow model based on the height field after isotach extraction using a region-based scheme. To validate the proposed method, the various PISA flow models were compared using pusatile color Doppler images with flow rates ranging from $30\;cm^3/sec\;to\;60\;cm^3/sec$ flow rate. Whereas the hemispherical flow model had a mean value of $29\;cm^3/sec$ and underestimated the measured flow rate by 35%, the proposed model and non-hemispherical model produced a c;ame mean value of $45\;cm^3/sec$, moreover, both flow models produced a similar pulsatile flow rate.

PISA 방법은 주로 승모판에서 역류하는 혈류량을 측정하기 위해 사용되고 있다. 이 방법은 PISA isotach의 기하학적 모양에 대한 모델링에 관한 것이다. PISA의 일반적인 유동모델은 isotach의 표면이 수식적으로 반구이거나 비반구임을 가정하여 계산된 것이지만, 본 논문에서는 영역기반방법으로 isotach를 추정한 후, 타원체의 높이에 기초한 실제적인 표면분할 유동모델을 이용하여 유체량을 추정하였다. 제안한 밥법을 평가하기 위해, $30cm^3/sec-60\;cm^3/sec$의 실제 유량을 가지는 동적인 180개의 유동영상에 대해서 기존 방법들과 비교하였다. 실험한 결과, 반구 유동모델의 유체량 평균이 $29\;cm^3/sec$로 실제 유체량 평균보다 35%정도 적게 추정을 하였고, 제안한 방법의 평균은 $45\;cm^3/sec$으로 비반구 유동모델의 평균과 같았고, 유체량 변화파형도 유사한 결과를 가짐을 알 수 있었다.

Keywords

References

  1. K. J. Ascah, W. J. Stewart and A. E. Weyman, 'A Doppler-two-dimensional echocardiographic method for quantitation of mitral regurgitation', Circulation, vol. 72, no. 2, pp. 377-383, 1985
  2. D. Mele, P. Vandervoort, and R. Levine, 'Proximal Jet Size by Doppler Color Flow Mapping Predicts Severity of Mitral Regurgitation'. Circulation, vol. 91, no. 3, pp. 746-754, 1995
  3. F. Recusani, G.S. Bargiggia, and D.J. Sehn, 'A new method for Quantification of Regurgitant Flow Rate Using Color Doppler Flow Imaging of the Flow Convergence Region Proximal to a Discrete Orifice', Circulation, vol. 83, no. 2, pp. 594-604, 1991
  4. C. L. Mcleod, 'Automated Image Analysis for Proximal Isovelocity Surface Area Echocardiography', Master's thesis, Dept. of Mechanical Eng., Queen's University, Canada, 1997
  5. R. M. Iwanochko, B. Hiscoke, and A. J. Sanfilippo, 'In vitro analysis of colour Doppler flow with the use of proximal isovelocity surface area: Improved flow estimates using a nonhemispherical model', Can J Cardio., vol. 15, no 1, pp. 89-94, 1999
  6. N. Dyn, D. Levin, and J. Gregory, 'A Butterfly Subdivision for Surface Interpolation with Tension Control', ACM Trans. Graphics, vol. 9, no. 2, pp. 160-169, 1990 https://doi.org/10.1145/78956.78958
  7. K.C. Jin, J.H. Cho, 'STK Feature Tracking Using BMA for Fast Feature Convergence', J. of Institute of Electronics Engineering of Korea, vol. 36, no. 8, pp. 81-87, 1999
  8. D. Comaniciu, P. Meer, 'Distribution free decomposition of multivariate data', Pattern analysis and Applications, vol. 2, no. 1, pp. 22-30, 1999 https://doi.org/10.1007/s100440050011
  9. R. Kimmel, A.M. Brucksten, 'Analyzing and synthesizing images by evolving curves with Osher Sethian method', J Computer Vision, vol. 24, no. 1, pp. 37-55, 1997 https://doi.org/10.1023/A:1007970107971
  10. F. P. Kuhl, C.R. Gardina, 'Elliptic fourier features of a closed contour', Computer graphics Image Processing, vol. 18, pp.236-258, 1982 https://doi.org/10.1016/0146-664X(82)90034-X
  11. J. Arvo, 'Stratified sampling of spherical triangles', ACM SIGGRAPH'95, pp. 437-438, 1995 https://doi.org/10.1145/218380.218500
  12. C. F. Dunkl, D.E. Rasmirez, 'Computing Hyperselliptic Integrals for Surface Measure of Ellipsoids', ACM Trans. Mathematical Software. vol. 20, no. 4, pp. 413-426, 1994 https://doi.org/10.1145/198429.198430
  13. J. Rourke, 'Computational Geometry Column 31', J Comp. Geometry and Application, vol. 7, no. 4, pp. 379-382, 1997 https://doi.org/10.1142/S0218195997000235