DOI QR코드

DOI QR Code

Analysis of Surface Temperature on Urban Green Space Using Unmanned Aerial Vehicle Images - A Case of Sorasan Mt. Nature Garden, Iksan, South Korea -

무인항공 영상을 활용한 도심녹지 표면온도 특성 분석 - 익산 소라산 자연마당을 대상으로 -

  • CHOI, Tae-Young (Bureau of Ecological Research, National Institute of Ecology) ;
  • MOON, Ho-Gyeong (Bureau of Ecological Research, National Institute of Ecology) ;
  • CHA, Jae-Gyu (Bureau of Ecological Research, National Institute of Ecology)
  • 최태영 (국립생태원 생태연구본부) ;
  • 문호경 (국립생태원 생태연구본부) ;
  • 차재규 (국립생태원 생태연구본부)
  • Received : 2017.09.07
  • Accepted : 2017.09.23
  • Published : 2017.09.30

Abstract

This study analyzed the surface temperature characteristics of urban green spaces under high summer temperatures to clarify the functions of green spaces in reducing urban temperatures. We obtained accurate surface temperature data using highresolution unmanned aerial vehicle images of the survey site, which was an isolated green space in the city. We analyzed differences in the surface temperature by land cover type, vegetation type, species type, and the relationship between surface temperature and vegetation volume. Based on the results, among the land cover types, wetlands and forests had low temperatures and paving areas had very high temperatures. Regarding vegetation type, broad-leaved trees had lower temperatures than coniferous trees in forests. However, in planted areas, coniferous trees had lower temperatures than broad-leaved trees. The temperature of long grass was higher than that of short grass, which suggested that the volume of grass affected the temperature. Regarding forest species type, the temperature of broad-leaved Robinia pseudoacacia forest and mixed broad-leaved forest was lower than coniferous Pinus densiflora forest. There was a slight difference in temperature between R. pseudoacacia forest and mixed broad-leaved forest. The analysis of the relationship between vegetation volume and temperature by forest species type indicated a negative correlation, where the temperature decreased with increasing vegetation volume, similar to the results of previous studies. However, we found a weak positive correlation in R. pseudoacacia forest; therefore, an increase in volume may not reduce the surface temperature depending on the dominant species.

본 연구는 도심온도 저감을 위한 녹지의 기능을 규명하기 위하여 여름철 고온 시간대에 도심녹지에서 나타나는 표면온도 특성을 분석하였다. 도시 내 고립된 녹지인 익산 소라산 자연마당을 대상으로 고해상도 UAV 영상을 활용하여 정밀한 표면온도 자료를 취득하였고, 피복유형, 식생유형, 수종유형, 수종별 녹지용적과 표면온도와의 관계를 분석하였다. 연구결과 피복유형 중 습지와 산림은 저온역, 포장지는 표면온도가 월등히 높은 고온역으로 확인되었다. 식생유형에서는 산림 내 침엽수보다 활엽수의 표면온도가 낮았고, 조경수식재지 내에선 활엽수보다 침엽수의 표면온도가 낮은 반대의 결과가 확인되었다. 장초지보다 단초지의 표면온도가 높아 초지의 용적에 따른 온도차이가 확인되었다. 산림수종유형별 표면온도는 침엽수인 소나무림보다 활엽수인 아까시나무림과 활엽수혼효림의 표면온도가 낮았고, 활엽수혼효림과 아까시나무림간의 미세한 표면온도 차이가 확인되었다. 산림수종유형별 녹지용적과 표면온도 분석결과 소나무림과 활엽수혼효림에서는 기존 연구 결과와 유사하게 녹지용적 증가에 따라 표면온도가 감소하는 음의상관관계가 확인되었다. 그러나 아까시나무림은 용적의 증가에 따라 미세하게 표면온도가 상승하는 약한 양의상관관계가 확인되어 수종에 따라서는 용적과 온도의 일관된 상관성에 예외가 있을 수 있음을 확인하였다. 향후 침엽수와 활엽수간 차이, 용적과 온도의 관계, 수종별 차이 등 녹지의 세부적 속성과 온도의 관계에 관하여 정밀한 공간자료를 활용한 다각적인 연구가 계속되어야 할 것으로 판단된다.

Keywords

References

  1. An, M.Y. 2015. Relationship between changing vegetation type and temperature in urban forest. Master's Thesis, Pusan Nat'l Univ. p.62 (안미연. 2015. 도시산림 식생유형변화와 온도 관계 연구. 부산대학교 석사학위논문. 62쪽).
  2. Bowler, D.E., L. Buyung-Ali, T.M. Knight, and A.S. Pullin. 2010. Urban greening to cool towns and cities: a systematic review of the empirical evidence. Landscape and Urban Planning 97(3):147-155. https://doi.org/10.1016/j.landurbplan.2010.05.006
  3. Cho, S.M., Y.H. Yoon, E.R. Ryu, B.J. Park, and W.T. Kim. 2009. The influence of land cover and zoning on the urban heat island in Cheongju. Journal of the Environmental Sciences 18(2):169-176 (조성모,윤용한, 류을렬, 박봉주, 김원태. 2009. 도시내용도지역의 토지피복형태가 열섬현상에 미치는영향. 한국환경과학학회지 18(2):169-176). https://doi.org/10.5322/JES.2009.18.2.169
  4. Davis, A.Y., J. Jung, B.C. Pijanowski, and E.S. Minor. 2016. Combined vegetation volume and“greenness”affect urban air temperature. Applied Geography 71:106-114. https://doi.org/10.1016/j.apgeog.2016.04.010
  5. Esri. 2017. World topographic map. Available at: https://www.arcgis.com (Accessed July 14, 2017).
  6. Gallo, K.P., A.L. McNab, T.R. Karl, J.F. Brown, J.J. Hood, and J.D. Tarpley. 1993. The use of a vegetation index for assessment of the urban heat island effect. International Journal of Remote Sensing 14(11):2223-2230. https://doi.org/10.1080/01431169308954031
  7. Hong, S.H. 2013. Cause analysis of the rising temperature in mixed city of urban and rural area: case of Miryang city, Kyongsangnamdo. Korean Journal of Environment and Ecology 27(6):757-764(홍석환. 2013. 도농복합도시 온도상승 영향요인 분석-경남 밀양시를 대상으로-. 한국환경생태학회지 27(6):757-764). https://doi.org/10.13047/KJEE.2013.27.6.757
  8. Hong, S.H., K.J. Lee, and B.H. Han. 2005. Analysis of temperature profiles by land use and green structure on built-up area. Korean Journal of Environment and Ecology 19(4):375-384 (홍석환, 이경재, 한봉호. 2005. 시가화지역 토지이용 및 녹지구조에 따른 온도변화 연구. 한국환경생태학회지 19(4):375-384).
  9. Hutcheon, R.J., R.H. Johnson, W.P. Lowry, C.H. Black, and D. Hadley. 1967. Observations of urban heat island in a small city. Bulletin of the American Meteorological Society 48:7-8.
  10. Imhoff, M.L., P. Zhang, R.E. Wolfe, and L. Bounoua. 2010. Remote sensing of the urban heat island effect across biomes in the continental USA. Remote Sensing of Environment 114(3):504-513. https://doi.org/10.1016/j.rse.2009.10.008
  11. Jenks, G.F. 1967. The data model concept in statistical mapping. International Yearbook of Cartography 7:186-190.
  12. Jo, H.K. and T.W. Ahn. 2009. Impacts of three-dimensional land cover on urban air temperatures. Journal of the Korean Institute of Landscape Architecture 37(3):54-60 (조현길, 안태원. 2009. 도시기온에 작용하는 입체적 토지피복의 영향. 한국조경학회지 37(3):54-60).
  13. Jung, H.E. 2014. A study on the temperature reduction effect and functional improvement of street green area in Seoul, Korea. Master's Thesis, Univ. of Seoul. p.86 (정희은. 2014. 서울 도심 가로수 및 가로녹지의 온도 저감 효과와 기능 향상 연구. 서울시립대학교 석사학위논문. 86쪽).
  14. Ki, K.S., B.H. Han, and J.Y. Hur. 2012. A study of factors influencing of temperature according to the land cover and planting structure in the city park. Korean Journal of Environment and Ecology 26(5):801-811 (기경석, 한봉호, 허지연. 2012.도시공원의 토지피복 및 식재구조에 따른 온도 영향요인 규명 연구-성남시 분당구 중앙공원을 사례로-. 한국환경생태학회지 26(5):801-811).
  15. Ki, K.S. and K.J. Lee. 2009. A study on temperature change profiles by land use and land cover changes of paddy fields in metropolitan areas. Journal of the Korean Institute of Landscape Architecture 37(1):18-27 (기경석, 이경재. 2009.대도시 외곽지역 논경작지의 토지이용 및 피복변화에 따른 온도 변화모형 연구. 한국조경학회지 37(1):18-27).
  16. Kim, S.B. and H.D. Kim. 2002. Influences of urban trees on the control of the temperature. Journal of the Korean Institute of Landscape Architecture 30(3):2 5-34 (김수봉, 김해동. 2002. 도시의 수목이 기온의 조절에 미치는 영향. 한국조경학회지 30(3):25-34).
  17. Kim, Y.P. 2004. A study on temperatures distribution of forest type class using Landsat TM. Journal of the Korean Institute of Forest Recreation 8(3):11-17(김영표. 2004. LANDSAT TM 위성영상을이용한 임상별 온도분포연구. 한국산림휴양학회지 8(3):11-17).
  18. Landsberg, H.E. 1981. The urban climate. Academic Press, New York. p.275.
  19. Lee, G.S., Y.W. Choi, K. Jung, and G.S. Cho. 2015. Analysis of the spatial information accuracy according to photographing direction of fixed wing. Journal of the Kor ean Association of Geographic Information Studies 17(3):141-149 (이근상, 최연웅, 정관수, 조기성. 2015. 고정익 UAV의 촬영방향에 따른 DEM 및 정사영상 제작 정확도 분석. 한국지적정보학회지 17(3):141-149).
  20. Lee, W.S., S.G. Jung, K.H. Park, and K.T. Kim. 2010. Analysis of urban thermal environment for environment-friendly spatial plan. Journal of the Korean Association of Geographic Information Studies 13(1):142-154 (이우성, 정성관, 박경훈,김경태. 2010. 친환경적 공간계획을 위한 도시의 열환경 분석. 한국지리정보학회지 13(1):142-154).
  21. Ministry of Environment. 2013. Land cover map. Available at: https://egis.me.go.kr (Accessed July 13, 2017).
  22. Montavez, J.P., A. Rodriguez, and J.I. Jimenez. 2000. A study of the urban heat island of Granada. International Journal of Climatology 20:899-911. https://doi.org/10.1002/1097-0088(20000630)20:8<899::AID-JOC433>3.0.CO;2-I
  23. Moon, H.G., S.M. Lee, and J.G. Cha. 2017. Land cover classification using UAV imagery and object-based image analysis-focusing on the Maseo-myeon, Seocheon-gun, Chungcheongnam-do-. Journal of the Korean Association of Geographic Information Studies 20(1):1-14 (문호경,이선미, 차재규. 2017. UAV와 객체기반 영상분석 기법을 활용한 토지피복 분류-충청남도 서천군 마서면 일원을 대상으로-. 한국지리정보학회지 20(1):1-14). https://doi.org/10.11108/KAGIS.2017.20.1.001
  24. Myint, S.W., E.A. Wentz, A.J. Brazel, and D.A. Quattrochi. 2013. The impact of distinct anthropogenic and vegetation features on urban warming. Landscape Ecology 28(5):959-978. https://doi.org/10.1007/s10980-013-9868-y
  25. Oke, T.R. 1973. City size and urban heat island. Atmospheric Environment 7(8):769-779. https://doi.org/10.1016/0004-6981(73)90140-6
  26. Olfe, D.B. and R.L. Lee. 1971. Linearized calculations of urban heat island convection effects. Journal of the Atmospheric Sciences 28(8): 1374-1388. https://doi.org/10.1175/1520-0469(1971)028<1374:LCOUHI>2.0.CO;2
  27. Park, K.H. and S.K. Jung. 1999. Analysis on urban heat island effects for the metropolitan green space planning. Journal of the Korean Association of Geographic Information Studies 2(3):35-45(박경훈, 정성관. 1999. 광역적 녹지계획 수립을 위한 도시열섬효과 분석. 한국지리정보학회지 2(3):35-45).
  28. Peng, S., S. Piao, P. Ciais, P. Friedlingstein, C. Ottle, F.M. Breon, H. Nan, L. Zhou, and R.B. Myneni. 2012. Surface urban heat island across 419 global big cities. Environmental Science & Technology 46(2):696-703. https://doi.org/10.1021/es2030438
  29. Skelhorn, C., S. Lindley, and G. Levermore. 2014. The impact of vegetation types on air and surface temperatures in a temperate city: a fine scale assessment in Manchester UK. Landscape and Urban Planning 121:129-140. https://doi.org/10.1016/j.landurbplan.2013.09.012
  30. von Arx, G., M. Dobbertin, and M Rebetez. 2012. Spatio-temporal effects of forest canopy on understory microclimate in a long-term experiment in Switzerland. Agricultural and Forest Meteorology 166-167:144-155. https://doi.org/10.1016/j.agrformet.2012.07.018
  31. Voogt, J.A. and T.R. Oke. 2003. Thermal remote sensing of urban climates. Remote sensing of environment 86:370-384. https://doi.org/10.1016/S0034-4257(03)00079-8
  32. Watkins, R., J. Palmer, M. Kolokotroni, and P. Littlefair. 2002. The balance of the annual heating and cooling demand with in the London urban heat island. Building Service Engineering 23(4):207-213. https://doi.org/10.1191/0143624402bt043oa

Cited by

  1. 원격탐사 및 시뮬레이션의 열지도 구축을 위한 공간정보 활용 효율화 연구 vol.36, pp.6, 2017, https://doi.org/10.7780/kjrs.2020.36.6.1.11