DOI QR코드

DOI QR Code

Comparison of ASTER Satellite and Ground-Based Surface Temperature Measurements for Urban Heat Island Studies

도시열섬연구를 위한 ASTER 위성영상과 지표면의 표면온도 비교

  • Song, Bong-Geun (Disaster Scientific Investigation Division, National Disaster Management Research Institute) ;
  • Park, Kyung-Hun (Department of Environmental Engineering, Changwon National University)
  • 송봉근 (국립재난안전연구원 재난원인조사실) ;
  • 박경훈 (창원대학교 환경공학과)
  • Received : 2017.08.31
  • Accepted : 2017.09.25
  • Published : 2017.09.30

Abstract

This study aimed to validate the ASTER surface temperature using field measurements over various land use types in the urban area of Changwon City, South Korea. The ASTER surface temperature was measured by collecting eight images during daytime and nighttime in June and September from 2012 to 2014, and field measurements were conducted over the same period when the satellite images were taken. The analyses showed that the surface temperature measured in the field during the daytime was higher than that of satellite imageries by $5{\sim}10^{\circ}C$, and the gap was higher in built-up areas. The calibration models of surface temperature showed a 60% explanatory power in areas other than parks, indicating that the models are reliable. During nighttime, except for the summer month of August, ASTER surface temperature was determined to be approximately $2^{\circ}C$ higher in contrast to daytime.

본 연구는 대한민국 창원시의 도시지역을 대상으로 현장에서 측정된 표면온도자료를 활용하여 토지이용유형별로 ASTER 표면온도 자료의 정확성을 분석하고 보정모형을 도출하고자 하였다. 토지이용유형은 공원과 상업시설, 단독주택, 아파트를 고려하여 총 8개를 선정하였다. ASTER 표면 온도는 2012년부터 2014년까지 6월과 9월에 촬영된 주간 및 야간의 8개 영상을 수집하였고, 현장측정은 위성영상이 촬영된 시간과 동일한 시기에 실시하였다. 또한 현장에서 측정된 표면온도의 방사보정을 위해 5일 동안 21개의 토지피복재질에 대해 방사율을 측정하였다. 주간시간은 현장에서 측정된 표면온도가 위성영상의 것보다 약 $5{\sim}10^{\circ}C$ 정도 높았고, 건물의 밀집된 지역일수록 차이가 큰 것으로 분석되었다. 표면온도 보정모형은 도시공원을 제외한 나머지 지역에서 설명력이 60%로 모형의 신뢰성이 있다고 분석되었다. 야간시간은 여름철인 8월을 제외하고 주간시간과 반대로 ASTER 표면온도가 약 $2^{\circ}C$ 다소 높은 것으로 분석되었다. 그러므로 위성영상의 표면온도를 활용하기 위해서는 반드시 현장자료를 바탕으로 정확성을 검증하고 보정할 필요가 있다. 본 연구의 결과는 이러한 측면에서 매우 의미가 있으며, 앞으로 도시지역의 열섬 문제를 개선하기 위해 도시 및 환경계획 분야에서 활용가치가 뛰어날 것으로 생각된다.

Keywords

References

  1. Arya, S.P. 2003. Introduction to micrometeorology (2nd Ed.). Academic Press, pp. 11-46.
  2. Barring, L., J.O. Mattsson, and S. Lindqvist. 1985. Canyon geometry, street temperatures and urban heat island in Malmo, Sweden. International Journal of Climatology 5(4):433-444. https://doi.org/10.1002/joc.3370050410
  3. Benali, A., A.C. Carvalho, J.P. Nunes, N. Carvalhais, and A. Santos. 2012. Estimating air temperature in Portugal using MODIS LST data. Remote Sensing of Environment 124:108-121. https://doi.org/10.1016/j.rse.2012.04.024
  4. Buyantuyev, A. and J. Wu. 2010. Urban heat islands and landscape heterogeneity: linking spatiotemporal variations in surface temperatures to land-cover and socioeconomic patterns. Landscape Ecology 25(1):17-33. https://doi.org/10.1007/s10980-009-9402-4
  5. Chen, H., R. Ooka, H. Huang, and T. Tsuchiya. 2009. Study on mitigation measures for outdoor thermal environment on present urban blocks in Tokyo using coupled simulation. Building and Environment 44(11): 2290-2299. https://doi.org/10.1016/j.buildenv.2009.03.012
  6. Chen, X.L., H.M. Zhao, P.X. Li, and Z.Y. Yin. 2006. Remote sensing image-based analysis of the relationship between urban heat island and land use/cover changes. Remote Sensing of Environment 104(2): 133-146. https://doi.org/10.1016/j.rse.2005.11.016
  7. Eliasson, I. 1996. Urban nocturnal temperatures, street geometry and land use. Atmospheric Environments 30(3):379-392. https://doi.org/10.1016/1352-2310(95)00033-X
  8. Fronapfel, E.L. and B.J. Stolz. 2006. Emissivity measurements of common construction materials. Proceedings of Infra-Mation 2006. pp.13-21.
  9. Fu, G., Z. Shen, P. Shi, Y. Zhang, and J. Wu. 2011. Estimating air temperature of an alpine meadow on the Northern Tibetan Plateau using MODIS land surface temperature. Acta Ecologica Sinica 31(1):8-13. https://doi.org/10.1016/j.chnaes.2010.11.002
  10. Gillespie, A., S. Rokugawa, T. Matsunaga, J.S. Cothern, S. Hook, and A.B. Kahle. 1999. A temperature and emissivity separation algorithm for Advanced Spaceborne Thermal Emission and Reflection Radiometer(ASTER) images. Geoscience and Remote Sensing 36(4):1-25.
  11. Gillespie, A., E. Abbott, L. Gilson, G. Hulley, J. Jimenez-Munoz, and J. Sobrino. 2011. Residual errors in ASTER temperature and emissivity standard products AST08 and AST05. Remote Sensing of Environment 115(12):3681-3694. https://doi.org/10.1016/j.rse.2011.09.007
  12. Gillespie, A.R., S. Rokugawa, S.J. Hook, T. Matsunaga, and A.B. Kahle. 1999. Temperature/emissivity separation algorithm theoretical basis document, Version 2.4.
  13. Jet Propulsion Laboratory. Pasadena. Available at: https://eospso.gsfc.nasa.gov/sites/default/files/atbd/atbd-ast-05-08.pdf(Accessed June 2017)
  14. Hall, D.K., J.E. Box, K.A. Casey, S.J. Hook, C.A. Shuman, and K. Steffen. Comparison of satellite-derived and in-situ observations of ice and snow surface temperatures over Greenland. Remote Sensing of Environment 112(10):3739-3749. https://doi.org/10.1016/j.rse.2008.05.007
  15. Harlan, S.L., A.J. Brazel, L. Prashad, W.L. Stefanov, and L. Larsen. 2006. Neighborhood microclimates and vulnerability to heat stress. Social Science and Medicine 63(11):2847-2863. https://doi.org/10.1016/j.socscimed.2006.07.030
  16. Hartz, D.A., L. Prashad, B.C. Hedquist, J. Golden, and A.J. Brazel. 2006. Linking satellite images and hand-held infrared thermography to observed neighborhood climate conditions. Remote Sensing of Environment 104(2):190-200. https://doi.org/10.1016/j.rse.2005.12.019
  17. Hung, T., D. Uchihama, S. Ochi, and Y. Yasuoka. 2006. Assessment with satellite data of the urban heat island effects in Asian mega cities. International Journal of Applied Earth Observation and Geoinformation 8(1):34-48. https://doi.org/10.1016/j.jag.2005.05.003
  18. Ichinose, T., K. Shimodozono, and K. Hanaki. 1999. Impact of anthropogenic heat on urban climate in Tokyo. Atmospheric Environment 33(24-25):3897-3909. https://doi.org/10.1016/S1352-2310(99)00132-6
  19. Kalnay, E. and M. Cai. 2003. Impact of urbanization and land-use change on climate. Nature 43(6939):528-531.
  20. Kato, S., T. Matsunaga, and Y. Yamaguchi. 2010. Influence of shade on surface temperature in an urban area estimated by ASTER data. Proceedings of International Archives of the Photogrammetry, Remote Sensing and Spatial Information Science 38(part 8):925-929.
  21. Kato, S. and Y. Yamaguchi. 2007. Estimation of storage heat flux in an urban area using ASTER data. Remote Sensing of Environment 110(1):1-17. https://doi.org/10.1016/j.rse.2007.02.011
  22. Klok, L., S. Zwart, H. Verhagen, and E. Mauri. 2012. The surface heat island of Rotterdam and its relationship with urban surface characteristics. Resources, Conservation and Reclycling 64:23-29. https://doi.org/10.1016/j.resconrec.2012.01.009
  23. Kloog, I., A. Chudnovsky, P. Koutrakis, and J. Schwartz. 2012. Temporal and spatial assessments of minimum air temperature using satellite surface temperature measurements in Massachusetts, USA. Science of the Total Environment 432:85-92. https://doi.org/10.1016/j.scitotenv.2012.05.095
  24. Kourtidis, K., A.K. Georgoulias, S. Rapsom anikis, V. Amiridis, I. Keramitsoglou, H. Hooyberghs, B. Maiheu, and D.A. Melas. 2015. Study of the hourly variability of the urban heat island effect in the Greater Athens Area during summer. Science of the Total Environment 517:162-177. https://doi.org/10.1016/j.scitotenv.2015.02.062
  25. Lafortezza, R., G. Carrus, G. Sanesi, and C. Davies. 2009. Benefits and well-being perceived by people visiting green spaces in periods of heat stress. Urban Forestry & Urban Greening 8(2):97-108. https://doi.org/10.1016/j.ufug.2009.02.003
  26. Lagios, E., S. Vassilopoulou, V. Sakkas, V. Dietrich, B.N. Damiata, and A. Ganas. 2007. Testing satellite and ground thermal imaging of low-temperature fumarolic field: the dormant Nisyros Volcano(Greece). ISPRS Journal of Photogrammetry and Remote Sensing 62(6):337-460.
  27. Lee, W.S., S.G. Jung, K.H. Park, and K.T. Kim. 2010. Analysis of urban thermal environment for environment-friendly spatial plan. Journal of the Korean Association of Geographic Information Studies 13(1):142-154 (이우성, 정성관,박경훈, 김경태. 2010. 친환경적 공간계획을위한 도시의 열환경 분석. 한국지리정보학회지 13(1):142-154).
  28. Li, J., C. Song, L. Cao, F. Zhu, X. Meng, and J. Wu. 2011. Impacts of landscape structure on surface urban heat islands: A case study of Shanghai, China. Remote Sensing of Environment 115(12):3249-3263. https://doi.org/10.1016/j.rse.2011.07.008
  29. Mihalcea, C., B.W. Brock, G. Diolaiuti, C. D'Agata, M. Citterio, M.P. Kirkbride, M.E.J. Cutler, and C. Smiraglia. 2008. Using ASTER satellite and ground-based surface temperature measurements to derive supraglacial debris cover and thickness patterns on Miage Glacier (Mont Blanc Massif, Italy). Cold Regions Science and Technology 52(3):341-354. https://doi.org/10.1016/j.coldregions.2007.03.004
  30. Ng, E., L. Chen, Y. Wang, and C. Yuan. 2012. A study on the cooling effects of greening in a high-density city: an experience from Hong Kong. Building and Environment 47:256-271. https://doi.org/10.1016/j.buildenv.2011.07.014
  31. Nichol, J. 2009. An emissivity modulation method for spatial enhancement of thermal satellite images in urban heat island analysis. Photogrammetric Engineering & Remote Sensing 75(5):547-556. https://doi.org/10.14358/PERS.75.5.547
  32. Oke, T.R. 1987. Boundary layer climate (2nd Ed.). London-Methuen. pp.1-15.
  33. Prince, S.D., S.J. Geotz, R.O. Dubayah, K.P. Czajkowski, and M. Thawley. 1998. Inference of surface and air temperature, atmospheric precipitable water and vapor pressure deficit using Advanced Very High-Resolution Radiometer satellite observations: comparison with field observations. Journal of Hydrology 212-213:230-249. https://doi.org/10.1016/S0022-1694(98)00210-8
  34. Rigo, G., Parlow, E., and Oesch, D. 2006. Validation of satellite observed thermal emission with in-situ measurements over an urban surface. Remote Sensing of Environment 104(2):201-210. https://doi.org/10.1016/j.rse.2006.04.018
  35. Roth, M., T.R. Oke, and W.J. Emery. 1987. Satellite derived urban heat islands from three coastal cities and the utilization of such data in urban climatology. International Journal of Geo-Information 10:1699-1720.
  36. Sabol, D.E., A.R. Gillespie, E. Abbott, and G. Yamada. 2009. Field validation of the ASTER temperature-emissivity separation algorithm. Remote Sensing of Environment 113(11):2328-2344. https://doi.org/10.1016/j.rse.2009.06.008
  37. Song, B.G. and K.H. Park. 2014. Validation of ASTER surface temperature data with in situ measurements to evaluate heat islands in complex urban areas. Advances in Meteorology. Available at: http://dx.doi.org/10.1155/2014/620410.
  38. Sobrino, J.A., R. Oltra-Carrio, J.C. Jimenez-Munoz, Y. Julien, G. Soria, B. Franch, and C. Mattar. 2012. Emissivity mapping over urban areas using a classificationbased approach: application to the Dualuse European Security IR Experiment (DESIREX). International Journal of Applied Earth Observation and Geoinformation 18:141-147. https://doi.org/10.1016/j.jag.2012.01.022
  39. Sobrino, J.A., R. Oltra-Carrio, G. Soria, R. Bianchi, and M. Paganini. 2012. Impact of spatial resolution and satellite overpass time on evaluation of the surface urban heat island effects. Remote Sensing of Environment 117:50-56. https://doi.org/10.1016/j.rse.2011.04.042
  40. Song, B.G. and K.H. Park. 2012. Analysis of heat island characteristics considering urban space at nighttime. Journal of the Korean Association of Geographic Information Studies 15(1):133-143 (송봉근, 박경훈. 2012. 도시공간을 고려한 야간시대의열섬특성 분석. 한국지리정보학회지 15(1):133-143). https://doi.org/10.11108/kagis.2012.15.1.133
  41. Song, B.G. and K.H. Park. 2010. An analysis of cold air generation area considering climate-ecological function-a case study of Changwon, South Korea-. Journal of the Korean Association of Geographic Information Studies 13(1):114-127 (송봉근, 박경훈. 2010. 기후생태적 기능을 고려한찬공기 생성지역 분석-창원시를 대상으로-.한국지리정보학회지 13(1):114-127).
  42. Vancutsem, C., P. Ceccato, T. Dinku, and S. Connor. 2010. Evaluation of MODIS land surface temperature data to estimate air temperature in different ecosystems over Africa. Remote Sensing of Environment 114(2):449-465. https://doi.org/10.1016/j.rse.2009.10.002
  43. Vogt, J., A.A. Viau, and F. Paquet. 1997. Mapping regional air temperature fields using satellite derived surface skin temperatures. International Journal of Climatology 17:1559-1579. https://doi.org/10.1002/(SICI)1097-0088(19971130)17:14<1559::AID-JOC211>3.0.CO;2-5
  44. Voogt, J.A. and T.R. Oke. 2003. Thermal remote sensing of urban climates. Remote Sensing of Environment 86(3):370-384. https://doi.org/10.1016/S0034-4257(03)00079-8
  45. Wenbin, Z., L. Aifeng, and J. Shaofeng. 2013. Estimation of daily maximum and minimum air temperature using MODIS land surface temperature products. Remote Sensing of Environment 130:62-73. https://doi.org/10.1016/j.rse.2012.10.034
  46. White-Newsome, J.L., S.J. Brines, D.G. Brown, J.T. Dvonch, C.J. Gronlund, K. Zhang, E.M. Oswald, and M.S. O’Neill. 2013. Validating satellite-derived land surface temperature with in situ measurements: a public health perspective. Environmental Health Perspectives 121(8):925-931. https://doi.org/10.1289/ehp.1206176
  47. Yu, C. and W.N. Hien, 2006. Thermal benefits of city parks. Energy and Buildings 38(2):105-120. https://doi.org/10.1016/j.enbuild.2005.04.003
  48. KASI(Korea Astronomy and Space Science Institute). 2017. Azimuth and altitude. Available at: http://astro.kasi.re.kr(Accessed June 2017).
  49. OMEGA. 2017. Emissivity. Available at: http://www.omega.com(Accessed June 2017).
  50. The Engineering ToolBox. 2017. Material properties. Available at: http://www.engineering toolbox.com(Accessed June 2017).
  51. Changwon Disaster and Safety Headquarters. 2017. Meteorological information. Available at: http://bangjae.changwon.go.kr (Accessed June 2017).

Cited by

  1. GIS 기반 노인인구 분포지역의 공간적 특성과 폭염의 관계 분석 - 창원시를 대상으로 - vol.23, pp.3, 2017, https://doi.org/10.11108/kagis.2020.23.3.068
  2. 원격탐사 및 시뮬레이션의 열지도 구축을 위한 공간정보 활용 효율화 연구 vol.36, pp.6, 2017, https://doi.org/10.7780/kjrs.2020.36.6.1.11