• Title/Summary/Keyword: 포화 투수층

Search Result 46, Processing Time 0.022 seconds

Assessment of Groundwater Contamination Vulnerability by Geological Characteristics of Unsaturated Zone (불포화대 지질특성에 따른 지하수오염취약성 평가)

  • Jeong, Gyo-Cheol
    • The Journal of Engineering Geology
    • /
    • v.28 no.4
    • /
    • pp.727-740
    • /
    • 2018
  • The media in the undersaturated zone is defined as the uppermost layer of the water table at which the groundwater is unsaturated or saturated discontinuously. The properties of the unsaturated zone can affect the reduction of contaminants that flow from the lower part of soil to the water table. In recent, there have been problems in evaluating groundwater contaminations vulnerability because weighted value for permeability is given, regardless of anisotropy and heterogeneity in the unsaturated media. Geological media have various ranges of permeability. When applying the weighted value, representative of permeability for grain sizes standardized, to construction of contamination vulnerability, it will produce more exaggerated result than the case that considers unsaturated geological properties. In this study, we performed laboratory column tests considering two sets of the unsaturated layers in order to investigate the permeability in anisotropic unsaturated zone with anisotropy. On the basis of the tests, average permeability coefficients were calculated considering the properties of unsaturated media obtained from drill cores in the field. The final contamination vulnerability map constructed shows that the contamination vulnerability map applying the properties of geological media of the unsaturated zone coincides much better with the results measured in the field, compared to the case of contamination vulnerability considering the weighted value in the unsaturated zone.

Probabilistic Seepage Analysis Considering the Spatial Variability of Permeability for Layered Soil (투수계수의 공간적 변동성을 고려한 층상지반에 대한 확률론적 침투해석)

  • Cho, Sung-Eun
    • Journal of the Korean Geotechnical Society
    • /
    • v.28 no.12
    • /
    • pp.65-76
    • /
    • 2012
  • In this study, probabilistic analysis of seepage through a two-layered soil foundation was performed. The hydraulic conductivity of soil shows significant spatial variations in different layers because of stratification; further, it varies on a smaller scale within each individual layer. Therefore, the deterministic seepage analysis method was extended to develop a probabilistic approach that accounts for the uncertainties and spatial variation of the hydraulic conductivity in a layered soil profile. Two-dimensional random fields were generated on the basis of the Karhunen-Lo$\grave{e}$ve expansion in a manner consistent with a specified marginal distribution function and an autocorrelation function for each layer. A Monte Carlo simulation was then used to determine the statistical response based on the random fields. A series of analyses were performed to verify the application potential of the proposed method and to study the effects of uncertainty due to the spatial heterogeneity on the seepage behavior of two-layered soil foundation beneath water retaining structure. The results showed that the probabilistic framework can be used to efficiently consider the various flow patterns caused by the spatial variability of the hydraulic conductivity in seepage assessment for a layered soil foundation.

The Evaluation of Seepage Characteristics in Reinforced Embankment Constructed on Low Permeable Clay Layer Through Centrifuge Model Tests (원심모형실험을 활용한 투수성이 낮은 기초지반에 위치한 보축 제방에서의 침투 거동)

  • Jin, Seok-Woo;Choo, Yun-Wook;Kim, Young-Muk;Kim, Dong-Soo;Im, Eun-Sang
    • Journal of the Korean Geotechnical Society
    • /
    • v.28 no.5
    • /
    • pp.27-39
    • /
    • 2012
  • In this paper, a series of centrifuge tests were performed to evaluate the seepage characteristic of reinforced embankment. The centrifuge models simulated an actual embankment reinforced by enlargement of levee cross-section. The centrifuge models have the same conditions except the locations of enlargement with low permeable material : water-side and land-side. In addition, the prototype embankment is constructed on low permeable clay layer. In the case of water-side reinforcement, the reinforced zone makes water head down and the saturated zone of embankment propagates slowly. In the case of land-side reinforcement embankment, the saturated zone enlarged relatively faster but the amount of exit water at land-side toe was very small because of the land-side reinforcement zone. The low permeable clay foundation layer was being continuously saturated by the inflow from the embankment as well as the uplift flow from the permeable layer induced by the excess pore water pressure.

IP Characteristics of Sand and Silt for Investigating the Alluvium Aquifer (충적대수층 조사를 위한 모래와 점토의 유도분극 특성 고찰)

  • Choi, Sang-Hyuk;Kim, Hyoung-Soo;Kim, Ji-Soo
    • The Journal of Engineering Geology
    • /
    • v.18 no.4
    • /
    • pp.423-431
    • /
    • 2008
  • In general, water-saturated silt or clay alluvium is characterized with relatively low-resistivity. Thus we often encountered the problem that such a low-resistivity layer is misguided to be good aquifer of high-permeability and low-resistivity in the development of groundwater. This research was conducted with an emphasis on the identification of saturated silt or clay layer from the aquifer by performing the laboratory experiment of IP and resistivity methods on the various materials consisting of alluvium aquifer. Silt or clay layer is found to be characterized with the higher chargeability zone, compared to the sand layer. Regarding the mixture of sand and clay, the higher clay volume, the lower resistivity and the higher chargeability. Subsequently chargeability decreases.

The Change in Geotechnical Properties of the Deposited Clay Contaminated by Leachate from Waste Disposals (침출수로 오염된 퇴적점토의 역학적 특성변화)

  • Ha, Kwang-Hyun;Lee, Sang-Eun
    • Journal of the Korean GEO-environmental Society
    • /
    • v.7 no.3
    • /
    • pp.43-54
    • /
    • 2006
  • In this paper, the uniaxial, triaxial compression tests and consolidation tests on the clay sample substituted initial pore water for pollutant were performed to evaluate the change in geotechnical properties of the contaminated clay. The contaminant transport analysis on embankment type landfill using the MT3D model was also performed to evaluate the extent of transport and diffusion. There was tendency that strength, compressibility and permeability has increased with the increase in the concentration of NaCl solution. The increase in the strength and compressibility of sample saturated with leachate was higher than samples saturated with NaCl solution, but in the permeability coefficient was lower. As the result of contaminant transport analysis, the predicted concentration was in high with the increase in the initial concentration of $Cl^-$ ion and increased in a non-linear form. The transportation distance calculated with use of regression equation between the distance from contaminant source and the concentration of $Cl^-$ ion was increased with the increase in the initial concentration.

  • PDF

Seepage Flow Model for Analysis of the Flow Field within the Beach (해빈내의 흐름장 해석을 위한 침투류 모형)

  • 김규한;박창근;한상대;편종근
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.9 no.3
    • /
    • pp.125-131
    • /
    • 1997
  • In order to analyze the feasibility of the drain layer construction method, which is one of the beach protection methods, a hybrid model is constructed by combining the wave model and the seepage flow model. The used wave model is the analytic solution given by Shuto (1972). and the seepage flow model is used by Richards equation which governs the saturated-unsaturated flow in the porous media. It is concluded by the sensitivity analysis of the hybrid model that the most sensitive parameter in the flow field within the beach is the saturated hydraulic conductivity. The developed hybrid model will be efficiently used in the analysis of the parameter when the drain layers are constructed in the beach, if the field datas are obtained more.

  • PDF

Liquefaction of Sand Seabed Induced by Water Pressure Wave (변동수압에 의한 사질 해저층의 액상화 연구)

  • Shon, Ho-Woong
    • The Journal of Engineering Research
    • /
    • v.4 no.1
    • /
    • pp.125-135
    • /
    • 2002
  • The vertical distribution of pore water pressure in the highly saturated sand layer under the oscillating water pressure (water wave) is studied theoretically and experimentally. By experiments it is shown that the water pressure acting on the sand surface propagates into the sand layer with the damping in amplitude and the lag in phase, and that the liquefaction, the state that the effective stress becomes zero, occurs under certain conditions. These experimental results are explained fairly well by the same theoretical treatment as for the ground water problems in the elastic aquifer. The main characteristics of liquefaction clarified by the analysis are as follows: 1) The depth of the liquefied layer increases with the increase of the amplitude and the frequency of the oscillating water pressure. 2) The increase of the volume of the water and the air in the layer increases the liquefied depth. Especially the very small amount of the air affects the liquefaction significantly. 3) The liquefied depth decrease rapidly with the increase of the compressibility coefficient of the sand. 4) In the range beyond a certain value of the permeability coefficient the liquefied depth decrease with the increase of the coefficient.

  • PDF

A Study on Logconductivity-Head Cross Covariance in Two-Dimensional Nonstationary Porous Formations (비정체형 2차원 다공성 매질의 대수투수계수-수두 교차공분산에 관한 연구)

  • 성관제
    • Water for future
    • /
    • v.29 no.5
    • /
    • pp.215-222
    • /
    • 1996
  • An expression for the cross covariance of the logconductivity and the head in nonstationary porous formation is obtained. This cross covariance plays a key role in the inverse problem, i.e., in inferring the statistical characteristics of the conductivity field from head data. The nonstationary logconductivity is modeled as superposition of definite linear trend and stationary fluctuation and the hydraulic head in saturated aquifers is found through stochastic analysis of a steady, two-dimensional flow. The cross covariance with a Gaussian correlation function is investigated for two particular cases where the trend is either parallel or normal to the head gradient. The results show that cross covariances are stationary except along separation distances parallel to the mean flow direction for the case where the trend is parallel to head gradient. Also, unlike the stationary model, the cross covariance along distances normal to flow direction is non-zero. From these observations we conclude that when a trend in the conductivity field is suspected, this information must be incorporated in the analysis of groundwater flow and solute transjport.

  • PDF

Estimation of $CO_2$ saturation from time-lapse $CO_2$ well logging in an onshore aquifer, Nagaoka, Japan (일본 Nagaoka 육상 대수층에서 시간차 $CO_2$ 물리검층으로부터 $CO_2$ 포화도의 추정)

  • Xue, Ziqiu;Tanase, Daiji;Watanabe, Jiro
    • Geophysics and Geophysical Exploration
    • /
    • v.9 no.1
    • /
    • pp.19-29
    • /
    • 2006
  • The first Japanese pilot-scale $CO_2$ sequestration project has been undertaken in an onshore saline aquifer, near Nagaoka in Niigata prefecture, and time-lapse well logs were carried out in observation wells to detect the arrival of injected $CO_2$ and to evaluate $CO_2$ saturation in the reservoir. $CO_2$ was injected into a thin permeable zone at the depth of 1110m at a rate of 20-40 tonnes per day. The total amount of injected $CO_2$ was 10400 tonnes, during the injection period from July 2003 to January 2005. The pilot-scale demonstration allowed an improved understanding of the $CO_2$ movement in a porous sandstone reservoir, by conducting time-lapse geophysical well logs at three observation wells. Comparison between neutron well logging before and after the insertion of fibreglass casing in observation well OB-2 showed good agreement within the target formation, and the higher concentration of shale volume in the reservoir results in a bigger difference between the two well logging results. $CO_2$ breakthrough was identified by induction, sonic, and neutron logs. By sonic logging, we confirmed P-wave velocity reduction that agreed fairly well with a laboratory measurement on drilled core samples from the Nagaoka site. We successfully matched the history changes of sonic P-wave velocity and estimated $CO_2$ saturation a(ter breakthrough in two observation wells out of three. The sonic-velocity history matching result suggested that the sweep efficiency was about 40%. Small effects of $CO_2$ saturation on resistivity resulted in small changes in induction logs when the reservoir was partially saturated. We also found that $CO_2$ saturation in the $CO_2$-bearing zone responded to suspension of $CO_2$ injection.

LIQUEFACTION OF SAND SEABED INDUCED BY WATER PRESSURE WAVE (수압변동에 의한 해저사질층의 액상화 현상연구)

  • HoWoongShon
    • Journal of the Korean Geophysical Society
    • /
    • v.4 no.3
    • /
    • pp.197-203
    • /
    • 2001
  • The vertical distribution of pore water pressure in the highly saturated sand layer under the oscillating water pressure (water wave) us studied theoretically and experimentally. By the experiments it is shown that the water pressure acting on the sand surface propagates into the sand layer with the damping in amplitude and the lag in phase, and that the liquefaction, the state that the effective stress become zero, occurs under certain conditions. These experimental results are explained fairly well by the same theoretical tearment as for ground water problems in the elastic aquifer. The main characteristics of liquefaction clarified by the analysis are as follows: 1) The depth of the liquified layer increases with the increase of the amplitude and the frequency of the oscillating water pressure. 2) The increase of the volume of the air in the layer increases the liquified depth. Especially the very small amount of the air affects the liquefaction significantly. 3) The liquefied depth decrese rapidly with the increase of the compressibility coefficient of the sand. 4) In the range beyond a certain value of the permeability coefficient the liquified depth decrease with the increase of the coefficient.

  • PDF