A Study on Logconductivity-Head Cross Covariance in Two-Dimensional Nonstationary Porous Formations

비정체형 2차원 다공성 매질의 대수투수계수-수두 교차공분산에 관한 연구

  • 성관제 (동국대학교 기계공학과)
  • Published : 1996.10.01

Abstract

An expression for the cross covariance of the logconductivity and the head in nonstationary porous formation is obtained. This cross covariance plays a key role in the inverse problem, i.e., in inferring the statistical characteristics of the conductivity field from head data. The nonstationary logconductivity is modeled as superposition of definite linear trend and stationary fluctuation and the hydraulic head in saturated aquifers is found through stochastic analysis of a steady, two-dimensional flow. The cross covariance with a Gaussian correlation function is investigated for two particular cases where the trend is either parallel or normal to the head gradient. The results show that cross covariances are stationary except along separation distances parallel to the mean flow direction for the case where the trend is parallel to head gradient. Also, unlike the stationary model, the cross covariance along distances normal to flow direction is non-zero. From these observations we conclude that when a trend in the conductivity field is suspected, this information must be incorporated in the analysis of groundwater flow and solute transjport.

본 논문에서는 다공성 매질의 특수율이 비정체형인 경우 대수투수계수-수두 교차공분산에 관한 식을 유도하였으며, 이 교차공분산은 수두분포로부터 특수장의 통계학적 특성을 유추하는데(inverse problem) 매우 중요한 역할을 담당한다. 비정체형 대수투수계수는 일정한 선형경향과 정체형인 미소 변동의 합으로 구성되었으며, 2차원 포화대수층에서 정상 유동문제를 추계학적으로 해석하여 수두분포를 얻었고 이로부터 교차공분산을 유도하였다. 투수계수의 상관함수가 가우스분포를 가지고 그 경향이 수두 경사와 평행이거나 직교하는 두 가지 경우에 대하여 교차공분산을 살펴 본 결과, 투수장의 경향이 주 흐름방향과 평행한 경우 흐름방향 쪽만 제외하고는 정체형임이 밝혀졌다. 또한, 흐름방향과 직교하는 쪽으로의 교차공분산은 정체형 모델 결과와 달리 영이 아님를 알 수 있었다. 따라서 지하수 유동이나 오염물질 확산문제를 다룰 경우, 투수계수장에 어떤 경향이 존재한다고 의심될 때에는 반드시 그 경향을 해석과정에 포함시켜야 한다.

Keywords

References

  1. Academic Mathematical methods for physicists Arfken, G.
  2. Water Resour. Res. v.22 no.2 Estimation of aquifer parameters under transient and steady state conditions: Ⅰ. Maximum likelihood method incorporating prior information Carrera, J;Neuman, S.P
  3. S[romger-Verlag Flow and transport of selected aquifers Dagac, G.
  4. Prentice Hall Stochastic suburface hydrololgy Gelhar, L.W.
  5. Water Resour. Res. v.21 no.4 Analysis of spatial structure of properties of selected aquifers Hoeksema, R.J.;Kitanidis, P.K.
  6. Math Geol. v.25 no.2 Stochastic groundwater flow analysis in the presence of trends in heterogeneous hydraulic conductivity fields Loaiciga, H.A.;Leipnik, R.B.;Marino, M.A.;Hudak, P.F.
  7. Water Resour. Res. v.26 no.10 Identification of large scale spatial trends in hydrologic data Raiaam, H;McLaughlin, D.
  8. Water Respur. Res. v.28 no.12 Field study of dispersion in a heterogeneous aquifer: 3. Geostatistical analysis of hydraulic conductivity Rehfeldt, K.R.;Boggs, J.M.;Gelhar, L.W.
  9. Water Resour. Res. v.24 no.10 Stochastic analysis of boundary effects on head spatial variability in heterogeneous aquigers:Ⅰ. Constant head boundary Rubin, Y.;Dagan, G
  10. Water Resour. Res. v.30 no.11 Investigation of flow and transport in certain cases of nonstationary conductivity fields Rubin, Y.;Seong, K.
  11. Computational methods in subsurgace hydrology Numerical experiments on dispersion in heterogeneous porous media Saladin, P.;Rinaldo, A.
  12. Trans. Porous Media v.5 A comparison of two-and three- dimensional stochastic models of regional solute movement Shapiro, A.M.;Cvetkovic, V.D.
  13. Water Resour. Res. v.27 no.10 The geostatistical characteristics of the Borden aquifer Woodbury, A.D.;Sudicky, E.A.