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A Study on Logconductivity-Head Cross Covariance in
Two—Dimensional Nonstationary Porous Formations
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Abstract

An expression for the cross covariance of the logconductivity and the head in
nonstationary porous formation is obtained. This cross covariance plays a key
role in the inverse problem, i.e., in inferring the statistical characteristics of the
conductivity field from head data. The nonstationary logconductivity is modeled
as superposition of definite linear trend and stationary fluctuation and the
hydraulic head in saturated aquifers is found through stochastic analysis of a
steady, two-dimensional flow. The cross covariance with a Gaussian correlation
function is investigated for two particular cases where the trend is either paral-
lel or normal to the head gradient. The results show that cross covariances are
stationary except along separation distances parallel to the mean flow direction
for the case where the trend is parallel to head gradient. Also, unlike the sta-
tionary model, the cross covariance along distances normal to flow direction is
non-zero. From these observations we conclude that when a trend in the conduc-
tivity field is suspected, this information must be incorporated in the analysis of
groundwater flow and solute transport.
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1. Introduction

The problem of water flow and solute trans-
port in aquifers is being studied with increasing
intensity as concerns about water quality and
pollution continue to grow. The movement of
water and solute through natural porous forma-
tions depends not only on the subsurface flow
conditions but also on the hydrogeologic proper-
ties through which the flow occurs and it is
common to find that earth materials have high-
ly variable hydrogeologic properties. It is this
highly variable nature coupled with the scarcity
of actual field measurements in general that led
to the development of stochastic methods in
study of flow and transport in porous forma-
tions.

Stochastic approach regards aquifer proper-
ties such as hydraulic conductivity K and its
logarithm, the logcondﬁctivity, Y =In K, as spa-
tial random variables characterized by probabili-
ty distributions. Field findings, such as
Hoeksema and Kitanidis (1985), tend to indi-
cate that Y is normal and most of the stochastic
study 1s based on the assumption that it is also
stationary, i.e., its spatial mean is a constant.
Although this assumption of stationarity greatly
simplifies the mathematical analysis and may be
applicable in many situations, it is by no means
universal. Recent reports have found that there
may be definite trends in the conductivity fields
such as Woodbury and Sudicky (1991) who in-
vestigated the possibility of a trend at the
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Borden site and Rehfeldt et al. (1992) who
found good indications that a trend in the con-
ductivity did influence the results of tracer ex-
periment at the Columbus AFB.

There have also been studies by such authors
as Rajaram and McLaughlin (1990) and
Loaiciga et al. (1993) who systematically incor-
porated the nonstationarity of the
logconductivity field in the stochastic analysis
of subsurface flow. The problem of transport in
a nonstationary conductivity field was treated
by Rubin and Seong (1994) who provided the
first-order analysis when there is a definite lin-
ear trend. The purpose of this study is to fur-
ther explore the phenomena of subsurface flow
along their line of analysis by studying the ef-
fects of nonstationarity on the cross covariance
of the logconductivity and the head.

The logconductivity —head cross covariance,
Cyn, is widely used in the inverse problem. The
inverse problem is one where appropriate spa-
tial distribution of the logconductivity is sought
from the rather extensive head data and limited
information on conductivity., Detailed informa-
tion on logconductivity in field applications is
seldom available as drilling wells and perform-
ing pumping tests are costly, whereas measure-
ments of the head obtained from piezometers,
which are much simpler and cheaper to operate,
are more easily obtainable. This inverse or iden-
tification problem which has been the subject of
much research in subsurface flow is beyond the
scope of our present study and readers are re-
ferred to Carrera and Neuman (1986) for a
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comprehensive review.

2. Mathematical Statement and Perturba-
tion Solution

We consider here steady, two-dimensional
groundwater flow in an aquifer lying horizontal-
ly and without recharge. Following field studies,
Y(x)=InK(x)
space random function (SRF) and in order to

is modeled as a log-normal

investigate the effects of nonstationarity, Y is
assumed to be made up of a spatially varying
mean and a small-scale local fluctuation:

Y(x)= <Y(x) >+Y (x) (1)

where angle brackets denote expected—value op-
erator. Here and subsequently, bold letters rep-
resent vectors and x, gy are the location vectors.
In this study we assume that the expected value
of Y is a linear function of space coordinate:

.

<Y(x) >=m+ax (2)

where m; and a are constants. The local fluctua-
tion, Y, of Eq. (1) is stationary, i.e., with a zero
mean and a covariance, Cy.

Cylxyg)=< Y (&)Y (y) >

=Cy( |7 |)=a} o, (|7 ]) (3)

2 . .
where r=x-y, g, the variance of Y and p, is

the correlation function.
The hydraulic head H and the specific dis-
charge g follow the continuity and Darcy’s law.

v-qg(x)=0; qlx)=-K(zx)VH(x) (4)

Eliminating q from Eq. (4) and combining Egs.
(1) and (2) result in the following:
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aVH(x)+VH(x)=-VY -VH(zx) (5)

which due to the randomness of Y  is a sto-
chastic PDE. For the boundary condition we as-
sume that the head gradient, —J, at some point
¢ in the flow domain, which is unbounded, is

given as
<VHE)>=-J=(=/, 0) (6)

impling that our coordinate is set up such that
x—axis is aligned with the main flow direction.
This assumption of an infinite domain boils
down practically to a requirement that the flow
domain be much larger than the logconductivity
correlation scale, roughly 10 integral scales
(Shapiro and Cvetkovic 1990). Although our so-
lution is based on an infinite flow domain,
whereas actual aquifers are obviously bounded,
it can be applied to actual situations as long as
they are sufficiently removed from the bound-
aries (Rubin and Dagan, 1988).

When H is expanded in terms of Ops

H=H{1]+H[s,]1+Hl0s.]1+0[c.] (7

and terms of same order collected, Eq. (5) be-
comes in ascending order of magnitude up to

olel1:

O[1]:a* VHy(x)+*Hy(x)=0 (8a)
Olo, J:a VH\(x)+ V°H\(x)
=-VY (x) - VHyx) (8b)
Olo2):a VHy(x)+ V?Hy(x)
=-vY'(x) - VH(x) (8¢c)



Egs. (8a) to (8c) together with the boundary
condition as stated in Eq. (6) constitute the en-
tire set of equations describing the flow in a
nonstationary  porous formation  whose
nonstationarity is manifested by a spatially
varying mean described in Eq. (2). Although a
small parameter expansion of the type used in
our analysis is usually strictly valid for parame-
ters much less than unity, recent studies such
as Saladin and Rinaldo (1990) indicate that

these approximations are quite accurate for
0: of the order of unity, thus making our

results applicable to many aquifers.

Solutions to water flow and solute transport
as defined by Egs. (6) and (8) are provided by
Rubin and Seong (1994) and readers are re-
ferred to op. cit. for more detailed derivations.
seek the
logconductivity and head,

Here we cross covariance of

Cyu(x,y)=<Y (x)HY(y)> (9)

In the most general case, the mean head gra-
dient J and the logconductivity trend a will
form some arbitrary angle in the horizontal
flow plane. However we limit our analysis to
two particular cases: ihe case of a parallel to J
and the case where a is orthogonal to J. With
our coordinate system set up as explained earli-
er, the former case results in a= (a,, 0) which
we will refer to as the a,—case and the latter a
=(0, a,) which will be referred to as the a,—
case.

3. Logeonductivity—Head Cross Covariance
3.1 The a;—case.a=(a;,0)

For the case of a, = 0, the mean head gradi-
ent, ¥ <H,>, from Eq. (8a) is
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O <H@)> __y
X

4 <Hy(x)> _

3z 0 (10)

and H, from Eq. (8b) can be found as

H{(x)= -JoealclJ’G(x—x')

- P | 3
QL) T gy (11)
where integration is performed over the infinite
domain and G is the Green’s function to the
modified Helmholtz equation (see Arfken,
1985). Eq. (11) relates the two SRF’'s Hyand Y~
explicitly and since H; results from a linear op-
eration on Y, it is also normal.

We can now derive the logconductivity-head
cross covariance, Cyy(a,y) by multiplying H,
(x) by Y (y) and applying the averaging oper-
ator as follows:

CYH(J!,II) =<Y '(.r)Hn(y)>

1
at) 39, ZJ' 0
e

@are T
S Fpadaca Rl

=Je

G(y—=x")dx’ (12)
where we have used the fact that Cy is station-
ary as expressed in Eq. (3).

After change of variables to z=x-y and using
convolution theorem of the Fourier transform,
Eq. (12) can be expressed in terms of 0y and

g which are the Fourier transforms of the corre-
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where i denotes the imaginary unit and g(—k) is
found to be the following.

ik

g( k) 271' k lalk1

(14)

Finally when the cross covariance Cyy is non—

. . . a8, . .
dimensionalized by J; e¢ , Cyy is expressed in

terms of the correlation function 19 v, which need
not be isotropic, and the trend represented by
the gradient of the logconductivity field a,.

a,¥
Colza) 0 ™ 5o
2%
ik, -lew-D
2—ialk| dk (15)

3.2 The a;,—case: a=(0, a;)

For the case of @, = 0, mean head gradient
from Eq. (8a) is found as

I<Hy(x)> _
axl

8<Ho(x)>

_JO al’ld axz

=0 (16)

which makes Eq. (8b) amenable to a Fourier

transform solution for H, resulting in

ik,

H(k) =Jug i

Y (k) (17)

By expressing H,(y) in terms of H(k) through
an inverse Fourier transform, the cross covari-
ance (non—dimensionalized by J;) is again found
as an integral of the correlation function and
the trend of the logconductivity field a,.

Cyu(zy) _ 1
05 2r ) -
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—1k(y—2)

Py(k)me dk (18)

With final expressions obtained in simple forms
as in Fgs. (15) and (18), they could serve as a
useful benchmark in testing of numerical codes
that are being developed to handle flow and
transport problems in nonstationary conductivi-
ty fields.

4. Results and Discussions for a Gaussian
Covariance

To study the effects of a linear trend in the
logconductivity on the cross covariance Cyy, the
two—dimensional! Gaussian correlation function
will be used.

oy (r)=exp —Z—z]: a/ly=2/m (19)

Also, we will concentrate on the cross
covariances along separation distances in the
mean flow direction and one perpendicular to it.
Before going into the particulars, it would be
worthwhile to analyze the general characteris-
tics of Cyy as expressed in Eqgs. (15) and (18).
Regarding the stationarity, it should be noted
that Cyy for the a,—case is nonstationary, i.e., it
not only depends on the distance y—z but also

on the location of the points themselves through

ey

the exponential term e

Hence, its
nonstationarity is in the mean flow direction
(along x—axis) and a closer examination of Eg.
(15) reveals that the situation is simplified by
the relation,

-ax
Cvi(xy)=e  Cyy(0, y—x) (20)
Unlike the a,—case, Cyy for the g;—case turns out

219



[ Gaussian Cov.Cy ]

0.5 T T T

Colog

“100 5.0 0.0 5.0 10.0
x/ly

Cyy along x,-axis for o, = 0

(a) Along Mean Flow Direction

{ Gaussian Cov. Cy ]

0.00 T
N
©
3
Q
-0.05 |-
et .r
/’ :
-0.10 | R i
Lot
- ‘< 'AI
- - '/
0.15 |- J coe =01 -
r === 0y=02
o - - =05
s Ve oy=10
umﬁ’ B
025 L L — L
0.0 2.0 4.0 6.0 8.0 10.0

X/ by
Cyy along x,-axis for o, = 0

(b} Normal to Mean Flow Direction
Fig. 1. Logconductivity-Head Cross Covariance
for a=(a,, 0)

to be stationary, i.e., it depends only on the sep-
aration vector y—zx, similar to the results for a
stationary logconductivity field.

Cross covariances for the a,—case with a
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Gaussian o, along x and x-axis are obtained

through numerical quadratures and are given in
Figs. 1(a) and 1(b), respectively. It should be
noted that because of its nonstationarity along
x1—axis, Cyy is obtained between (0,0) and (x,
0) in Fig. 1(a). This model clearly depicts the
antisymmetric profile for ¢, = 0, reproducing
the stationary model (see Gelhar, 1993) and it
is seen that due to the exponential term, it be-
comes skewed with magnitude increasing in the
upstream direction as the trend intensifies.

Nonstationary cross covariance is symmetric
along the x;—axis as plotted in Fig. 1(b), where-
as the stationary model predicts an identically
zero Cyy (see Dagan, 1989). It can be seen that
as a; increases, magnitude near the origin in-
creases with the correlation length decreasing
rapidly.

In Fig. 2, Cyy for the ey—case is presented
along the mean flow direction, which is
antisymmetric. The cross covariance vanishes
for any separation distance normal to the mean

{ Gaussian Cov. Cy ]

Cenl oy?

X,y

Cyy; along x,-axis for o, = 0

Fig. 2. LogconductivityHead Cross Convariance
for a= (0, a,) along Mean Flow Direction.
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flow direction as does the stationary model. Un-
like the a,—case, the magnitude uniformly de-
creases along with correlation length as the
trend intensifies. From these results, one can
clearly observe not only the quantitative effects
of the logconductivity trend on the cross covari-
ance but also different qualitative characteris-
tics compared to the case where the conductivi-
ty field is stationary.

5. Conclusions

In this paper, expressions were derived for the
logconductivity-hydraulic head cross covari-
ance, Cyy, In two—dimensional heterogeneous po-
rous formations whose logconductivity shows a
definite linear trend. The study was motivated
by the fact that this cross covariance plays a
key role in the so called “inverse problem”, i.e.,
the problem of inferring the conductivity field
characteristics from head measurements and
also by recent findings that report actual field
situations where the existence of trends in the
logconductivity 1s strongly suspected.

The cross covariance is developed from a line-
arized flow equation followed by a perturbation
type expansion. The flow equation is solved up

to O[oﬁ] for two particular cases, where the

conductivity trend is parallel to (a,—case) or
normal to the mean flow direction (a,—case).
The cross covariance is found as an integral
over the Fourier wave number space in terms
of the parameters which characterize the
logconductivity field and the average head gra-
dient.

For applications, results for separation dis-
tances along (x,—axis) and normal to the mean
flow direction (x;—axis) for a conductivity field
with Gaussian covariance are presented. Our
results indicate that Cy is stationary except for
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the a,—case along x—axis. Also, Cyy along x—-
axis for the a;—case is non—zero, unlike the
results for stationary conductivity fields where
it is identically zero. Considering these qualita-
tive differences as compared to the stationary
case, the stationary model would lead to erro-
neous results when a trend in the
logconductivity field is suspected, especially
when it is used in characterizing the conductivi-

ty field statistics.
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